Designs von vergleichenden registerbasierten Interventionsstudien

Tim Mathes Institut für Medizinische Statistik, Universitätsmedizin Göttingen

Comparative Effectiveness Research

- CER: Generation and synthesis of **causal evidence** that **compares benefits and harms** of Health Technologies (prevention, diagnoses, treatment and monitoring a clinical condition, measures to improve the delivery of care)
- Evidence is generated through research that uses various study designs
- Focus on research under real-world conditions (e.g. heterogeneous population)

Common pitfalls registry based non-RCT

ORIGINAL ARTICLE

No inexplicable disagreements between real-world data-based nonrandomized controlled studies and randomized controlled trials were found

> Unmeasured confunders, time related biases, and no information on missing data were the most common problems

Target Trial Emulation

2-steps:

- 1. Articulating the causal question in the form of the protocol of a hypothetical randomized trial RCT
- 2. Explicitly emulating the components of that protocol using the observational data

	Target Trial	Emulation
Eligibility criteria		
Treatment strategies		
Treatment assignment		
Follow-up period		
Outcomes		
Causal contrast of interest		
Analysis plan		

Results of attempts to systematically emulate RCTs

								0.6	-					
No.	Trial name	Comparator emulation ^a	Outcome emulation ^b	Age distribution, mean difference, y	Sex distribution, difference in % female	Run-in window ^c	Placebo con						16	
1	LEADER	Moderate	Good	-3.4	-17.8	Yes, placebo	Yes	0 0 4		10				
2	DECLARE	Moderate	Moderate	1.4	-4.9	Yes, placebo	Yes	ຍ 0.4		19				
3	EMPA-REG	Moderate	Good	1.2	-11.9	Yes, placebo	Yes	n c						
4	CANVAS	Moderate	Good	-2.0	-10.5	Yes, placebo	Yes	p .						
5	CARMELINA	Poor	Good	-6.4	-16.2	No	Yes	Ĕ						
6	TECOS	Poor	Moderate	-6.8	-18.1	No	Yes	0.2	+				2 21	
7	SAVOR-TIMI	Poor	Good	-3.8	-13.7	No	Yes	, E					12	
8	LEAD-2	Good	Moderate	-2.0	-6.0	Yes, both groups	No	Š					14 4 6	
9	TRITON-TIMI 38	Good	Good	3.4 ^f	4.9	No	No						1 232	
10	PLATO	Good	Good	-3.3 ^f	-4.1	No	No	ā o					TR 2000	
11	ISAR-REACT 5	Good	Good	5.6	0.9	No	No	y u						0
12	ARISTOTLE	Good	Good	-6.1	-16.7	No	No						910	° 17
13	RE-LY	Good	Good	-4.7	-5.9	No	No	10					182 -10	
14	ROCKET-AF	Good	Good	-4.5	-14.9	No	No t	Ē						
15	EINSTEIN DVT	Good	Moderate	-14.7	-17.0	No	No	5 -0.2	-			2	2 29	
16	EINSTEIN PE	Good	Moderate	-8.2	-4.9	No	No						24 25	27
17	RE-COVER II	Good	Moderate	-13.5	-16.4	No	No						24 28	3
18	AMPLIFY	Good	Moderate	-0.6	-10.1	No	No						26	
19	RECORD1	Good	Good	1.0	1.6	No	No	-0.4						
20	TRANSCEND	Moderate	Good	-4.0	-14.1	Yes, both groups	Yes	-0.4	20	1 5	1.0	0.5	-	0,5
21	ON TARGET	Good	Good	-2.4	-27.2	Yes, both groups	No	-	2.0	-1.5	-1.0	-0.5	0	0.5
22	HORIZON PFT	Moderate	Good	-1.0	0	No	Yes				Avera	no moscuro		
23	VERO	Good	Moderate	1.1	0	No	No				Averag	je measure		
24	DAPA-CKD	Moderate	Moderate	-5.5	-11.4	No	Yes		NO	NO	NO	Yes	NO	
25	PARADIGM-HF	Moderate	Moderate	-4.7	-6.2	Yes, both groups	No		No	No	Yes	No	No	-
26	P04334	Good	Good	-11.2	1.9	Yes, 1 class	No		No	No	Yes	No	No	-
27	D5896	Good	Good	-3.3	-1.8	No	No		No	No	Yes	No	No	-
28	IMPACT	Good	Good	-4.0	-25.5	Yes, baseline prescription	No		No	No	Yes	No	No	-
29	POET-COPD	Good	Good	-7.5	-28.3	Yes, mixed	No		No	No	Yes	No	No	
30	INSPIRE ^h	Good	Moderate	-1.5	-44.6	Yes, 1 class	No		No	No	Yes	No	No	
31	CAROLINA ⁱ	Good	Good	-6.3	-12.3	Yes, placebo	No		No	Yes	No	No	Yes	
32	PRONOUNCE1 ⁱ	Good	Good	-3.0	0	No	No		No	Yes	No	No	Yes	-

Requirements on data for TTE to avoid bias

- Information on patients, intervention, comparison, outcomes
- Confounding: all important confounders available or data allow highdimensional matching
- Time related biases: detailed information of study start, time of fulfilling inclusion criteria, start of follow-up
- In certain circumstances data for calculating a specific estimand of interest (e.g. per protocol effect)
- Sufficient data quality, particularly regarding missing data and measurement error

Registry-based RCT (rRCT)

ORIGINAL ARTICLE

Registry-based randomized controlled trials merged the strength of randomized controlled trails and observational studies and give rise to more pragmatic trials

Characteristics

- Number of included patients (median; IQR): 2000 (533; 17793)
- Mean follow-up (median; IQR): 5,3Y (1,0; 11,1)

Risk of Bias

- Time related biases avoided by design
- Missing data and outcome measurement error will be often balanced because of randomization
- Can often be considered blinded

The future?: Plattform Trials

Evaluation of multiple Interventions to a common control

The future?: Trials within registry cohorts

Trial within Cohort (TwiCs)

Quelle: https://www.twics.global/

Combining data from rRCTs and observational data

- Hierarchical models for evidence synthesizes
- Extrapolation of RCTs to real-world
- Bias adjustment of non-randomized studies

Conclusion

- If all necessary data are available (and self-inflected bias is avoided), RCT-effects can be emulated using registry data. However some uncertainty always remains
- rRCTs usually require less data, and data quality and thus maybe associated with less effort than adapting a registry for a trial
- Combing registry-based non-RCTs and RCTs using advanced synthesizes methods will usually give the highest information and evidence level

References

- 1. Friede, T., Röver, C., & Mathes, T. (2023). Verknüpfung von randomisierten kontrollierten Studien und Real World Data. Prävention und Gesundheitsförderung, 1-7.
- 2. Hernán, M. A., Wang, W., & Leaf, D. E. (2022). Target trial emulation: a framework for causal inference from observational data. Jama, 328(24), 2446-2447.
- 3. Mathes, T., & Pieper, D. (2018). Study design classification of registry-based studies in systematic reviews. Journal of Clinical Epidemiology, 93, 84-87.
- Mathes, T., Buehn, S., Prengel, P., & Pieper, D. (2018). Registry-based randomized controlled trials merged the strength of randomized controlled trails and observational studies and give rise to more pragmatic trials. Journal of clinical epidemiology, 93, 120-127.
- 5. Mathes, T., Rombey, T., Kuss, O., & Pieper, D. (2021). No inexplicable disagreements between real-world data–based nonrandomized controlled studies and randomized controlled trials were found. Journal of Clinical Epidemiology, 133, 1-13.
- 6. Mathes, T. (2023). Anforderung an die Daten für die Target-Trial-Emulation: Eine Diskussion unter Betrachtung von Patientenregistern. GMS Med Inform Biom Epidemiol 2024;20:Doc03
- 7. Pitre, T., Cheng, S., Cusano, E., Khan, N., Mikhail, D., Leung, G., ... & Zeraatkar, D. (2023). Methodology and design of platform trials: a meta-epidemiological study. Journal of clinical epidemiology, 157, 1-12.
- Wang, S. V., Schneeweiss, S., Franklin, J. M., Desai, R. J., Feldman, W., Garry, E. M., ... & RCT-DUPLICATE Initiative. (2023). Emulation of randomized clinical trials with nonrandomized database analyses: results of 32 clinical trials. Jama, 329(16), 1376-1385.

Master

• XXX