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Prediction

“10% risk”



Clinical prediction models
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Validated→ Trustworthy?
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Trustworthiness of predictions

Mathematical models needed:

• Complex processes

• No simple prediction via a deterministic theory

Modelling assumptions:

• Generally false

• Intelligent guesswork

Medical prediction: y ~ X



Topics: trustworthy predictions

1. What do we need for individual patients?

• Internal vs external validity

• Calibration vs discrimination

2. Trustworthy processes to build a prediction model?

• AI

• Humans

• Requirements

3. Types of uncertainty

• Statistical aspects

• Model uncertainty

• Heterogeneity between contexts of practical application



Validated = trustworthy?

• Classic: 

• No validation, only internal→ low ranking journal

• 1 convincing validation→ top journal

• Modern

• Substantial heterogeneity in performance

→ There is no such thing as a validated model



Example in neurotrauma, external validation
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Modification of val.prob() in rms; val.prob.ci.2()
Steyerberg et al, PLoS Med 2008

well calibrated over prediction



Very heterogenous validations
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Perspective at validation
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Summary validation

• Internal: minimum, same underlying population

• External:

• Temporal

• Geographic

• Domain

• Efficient: internal-external cross-validation



Performance assessment

• What is the most commonly reported measure for performance of 

prediction models?

• Area under the Receiver Operating Characteristic curve (AUC), or 

concordance (c) statistic

• Discrimination = spread of predictions between individuals

• Higher if better predictors in model

• Higher --> more trustworthy??
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Trustworthiness for individuals

• Calibration = reliability of predictions per individual
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Modification of val.prob() in rms; val.prob.ci.2()
Steyerberg et al, PLoS Med 2008

well calibrated



Trustworthiness for individuals

• Calibration = reliability of predictions per individual

• True risk estimates UTOPIAN

• Calibration underreported



Topics: trustworthy predictions

1. What do we need for individual patients?

• Internal vs external validity

• Calibration vs discrimination

2. Trustworthy processes to build a prediction model?

• AI

• Humans

3. Types of uncertainty

• Statistical aspects

• Model uncertainty

• Heterogeneity between contexts of practical application



Trustworthiness of ChatGPT

ChatGPT: may be hallucinating

• Simple calculations: 





Trustworthiness and AI

• Relation to evidence base

• Other popular terms related to AI

• Fairness

• Equity

→ Let’s ask ChatGPT









Trustworthy models?

• Modeling flexibility: friend or foe?

Human oversight on:

• Classical modeling: selection of predictors; nonlinearity; interactions

• AI: hyperparameters; technique CART / RF / XGBoost / nnet / ..





Trustworthiness: poor for human modelers

Red cards and dark skin soccer players

https://psyarxiv.com/qkwst/
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https://psyarxiv.com/qkwst/


• 29 teams involving 61 analysts; same dataset; same research question: 

whether soccer referees are more likely to give red cards to dark skin 

toned players than light skin toned players

• Estimated odds ratios 0.89 –2.93 (median 1.3) 

• 20 teams: statistically significant positive effect, 9: non-significant relation
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Estimated odds ratios by 29 research teams
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“Logistic regression”
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Claimed trust in results
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Trustworthiness: poor for human modelers

• 29 teams involving 61 analysts; same dataset; same research question: 

whether soccer referees are more likely to give red cards to dark skin toned

players than light skin toned players

• Estimated odds ratios 0.89 –2.93 (median 1.3). 

• 20 teams: statistically significant positive effect, 9: non-significant relation.

• 21 unique combinations of covariates

• “Variation in analysis of complex data may be difficult to

avoid, even by experts with honest intentions”
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Some irony

“ .. the authors forgot to add a citation of the Nature commentary to the final

published version of the AMPPS article or to note that the main findings had been 

previously publicized via the commentary, the online preprint, research 

presentations at conferences and universities, and media reports by other people. 

The authors regret the oversight.”
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Explainable to humans = trustworthy?

• Explainable AI

• Algorithm trustworthy: if predictions are based on factors that are 

acceptable to domain experts instead of on ‘spurious correlations’

• SHAP (SHapley Additive exPlanations) values

“By using SHAP values, researchers and practitioners can gain a 

deeper understanding of how different features influence model 

predictions, leading to improved model interpretability and trust.” 

ChatGPT3.5



Topics: trustworthy predictions

1. What do we need for individual patients?

• Internal vs external validity

• Calibration vs discrimination

2. Trustworthy processes to build a prediction model?

• AI

• Humans

3. Types of uncertainty

• Statistical aspects

• Model uncertainty

• Heterogeneity between contexts of practical application



Approaches to uncertainty quantification

• Sample size

• specifically #events for binary outcome prediction

• ‘patients like you’ and exceptionality

• For risk communication: aleatory uncertainty

• For uncertainty communication: epistemic



Example on presentation by ‘the king of nomograms’
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N = 100?
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GUSTO data, n=1200 
(out of 40,830)



Uncertainty for rare, strong predictor: SHOCK
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Predictions with and without SHOCK in the model
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AI: arXiv paper

“Trustworthiness expresses whether a prediction is aligned with the

train data”

• Distance between the new patient and similar patients from the

training data estimates the trustworthiness of a prediction; 

resembles the reference data

• Prediction for the new patient is close to the ground truth of the

neighbors in the training set.



Claim

”Effective N is an attractive concept to address epistemiologic uncertainty”

• Analytic solutions for regression models

• Minimum certainty, say, n>10, for model specification: selection / shrinkage?

• Approximate solutions for machine learning models

• Bootstrap

• Effective N: conditional on the model
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Model uncertainty

• 246 biologists modeling

• 61 analysts in 29 teams on the Red Card problem

• …

• Comparisons between classic vs machine learning



Systematic review
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Differences in discrimination



Topics: trustworthy predictions

1. What do we need for individual patients?

• Internal vs external validity

• Calibration vs discrimination

2. Trustworthy processes to build a prediction model?

• AI

• Humans

3. Types of uncertainty

• Statistical aspects

• Model uncertainty

• Heterogeneity between contexts of practical application



Heterogeneity

• Study design

• Selection of subjects

• Disease domain

• Measurement of covariates

• Measurement of outcomes

• Associations of covariates with outcome

• Overall outcome rates



Heterogeneity in performance

Steyerberg et al, PLoS Med 2008

Dijkland S et al; J Neurotrauma 2019
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15 cohorts: 11 RCTs, 4 Observational studies
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Heterogeneity in case-mix
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Heterogeneity in predictor effects
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Heterogeneity in predictions

25-Mar-2456 Insert > Header & footer



Heterogeneity in individual predictions
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Conclusions on trustworthy predictions

• Epistemic uncertainty: under the influence of the modeler

• Larger sample sizes

• Modest modeling, limit flexibility

• Heterogeneity: assess differences between settings

• Study design

• Distribution and effects of covariates

• Differences between predictions

• Model predictions suffer from multiple sources of uncertainty

• Transparency: for policy makers / physicians / patients

• Context dependency: Local versus global models

25-Mar-2458 Insert > Header & footer


