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Overview

This package is used to construct group sequential designs for the analysis of genome-wide
association studies (GWAS). Two basic tools are provided for the construction of:

1. Optimized Multi-stage Designs (OMD) of up to five stages either minimized for the
cost or maximized for the power of the study, respectively. A large number of pa-
rameters relevant for application in practice are incorporated, such as limited study
budget, different gene chips (including rebate functions), varying case fractions,
lower and upper bounds on sample sizes, and many more.

2. Flexible two-stage designs (CRP-Tool), enabling flexible marker selection after the
first stage, that is, not only based on the statistical outcome alone but also upon
biological or any other criteria, respectively. In addition, it allows the first interim
analysis (stage one) to be conducted at any given time during the course of the
project and to modify the initially planned sample size based on the outcome of
that analysis, respectively.

The entire functionality is provided in a graphical user interface (GUI), which is started
right after the package has been loaded into R, showing the main selection dialog:1

Figure 1: The GroupSeq++ window at program start (Ubuntu 12.04.1, GNOME 3.4.1).

Most of the computationally demanding calculations have been implemented in a C++
library, which is executed in the background using software mulithreading. As such, the
R-console is not ”blocked” during computation, but can be used as normal by the user2.

1Depending on your operating system, the GUI as presented here and in all following screenshots may
look different from yours in both style and colors.

2By default the R-console, from where GroupSeq++ has been called, is printing status/results during
the computation, which of course may interfere with any work done simultaneously in that console.
However, the GUI provides an option to turn this off.
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IMPORTANT NOTE for Windows users

On computers running Windows, the GUI may freeze at times if a GroupSeq++ window
is moved or resized. Once this did happen, tabbing into a different context (i.e., press
and release Alt+Tab) usually does unfreeze the window again. If you observe this with
your installation, it is recommended to avoid resizing/moving the GroupSeq++ windows,
which does not affect the overall functionality by much.
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Part I

Optimized Multi-stage Designs
(OMD)

Figure 2: Selecting the OMD module from the main menu.

The OMD module enables the construction of optimized multi-stage designs for genome-
wide case-control association studies (GWAS). Such multi-stage designs are used for a
stage-wise but joint analyis (Skol et al., 2006) of GWAS with stepwise reduction of the
marker set after each stage. Given an initial setup, the program determines both an
optimal allocation of the samples and an optimal choice of critical bounds for each of the
different stages while still controlling the pre-specified type I error risk. The resulting
optimized multi-stage design is more economical than a simple single-stage study design.
The optimization can be performed for different objectives and various study parameters
and constraints that typically occur in practice (see also the list of features in section 2).

1 How to read the OMD manual

For most users it is recommended to read the manual from start to end. If you are already
familar with multi-stage designs in GWAS, however, you may want to skip section 3.
Section 3.4 presents some valuable thoughts about the workflow when optimizing multi-
stage designs. You may also skip section 4 about the ”Parameters and options”, if you
instead try to start working with the GUI right away by just using the integrated tooltips.
For a very quick start, you can jump to the end and check out the use cases beginning at
section 6.
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2 Features overview

• Optimized multi-stage design of up to 5 stages

– Two optimzation objectives

∗ Minimize study cost for desired power

∗ Maximize study power for some limited budget

– Optimal allocation of samples to the different stages

– Optimal significance levels (while always maintaining the type I error) for
marker selection at each stage including the final significance level for the final
test decision

– Optimal choice of gene chips from a pre-specified set of chips as available in
practice with the possibility to specify individual discount prices depending on
the number of ordered pieces

– Optimal sample size

– Expected number of markers per stage

– Stage-wise cumulative type I error and power, respectively

– On-the-fly output of currently found optimum

• Study parameters

– Expected risk allele frequency and odds ratios of disease marker

– Case-control fraction (possibly varying over different stages to model imbal-
anced study recruitment)

– Additional cost offset per subject such as recruiting or phenotyping cost (if
desired, cost can be specified individually for each subject)

– Allowing for initial ”cost-free subjects”, for example, from earlier studies to
construct follow-up designs

• Optimization parameters

– Choose between three different optimization algorithms or combine them in a
chain

– Set various constraints prior to optimization

∗ Maximal total sample size

∗ Minimal stage size

∗ Lower and/or upper sample size bounds at each stage

∗ Gene chip to be used at a stage

– Tweak optimization (advanced users)

∗ Cap number of function evaluations in search process

2



∗ Maximum runtime

∗ Convergence tolerance

∗ Constraint tolerance

3 Method overview

3.1 GWAS

Genome-wide association studies (GWAS) are widely used to detect genes involved in
complex diseases. Typically a huge number of, say M , genetic markers is genotyped at a
large sample of, say N , subjects, which are divided into cases and controls with respect to
some trait or disease. Based on the null hypothesis H0 that no marker is associated with
the trait, a statistical test is performed for each marker in order to detect a significant
difference of genotype frequencies in cases versus controls. Particularly, for each marker,
a test statistic summarizing the difference between cases and controls is computed and
is matched against a prespecified significance threshold. Usually the threshold is chosen
such that the genome-wide type I error is controlled at 5%.

3.2 The multi-stage framework in genomic studies

Although genotyping costs have dropped considerably over the past years, they are still
a concern in GWAS, especially since not only the number of markers but also the sample
sizes have been constantly increasing in order to hunt for smaller and smaller genetic
effects. The multi-stage framework can be used to address this problem, because it enables
cost efficient study designs. The basic idea is to save genotyping costs by performing a
stage-by-stage analysis in which the set of markers will not be genotyped for all subjects
at once. Instead all subjects are subdivided into several groups at the beginning of the
study and the genotyping is distributed over these groups while at the same time the
marker set is cut down at each stage (figure 3).

3.2.1 Design construction

Let S be the number of groups and n1, . . . , nS the number of subjects per group, thus
N =

∑S
i=1 ni. Each group defines a stage. In stage one, all M1 = M markers are

genotyped at the n1 subjects and tested against the stage one significance threshold.
Only those markers showing significant association with respect to this first threshold
are carried forward to the second stage3. The number of markers surviving a stage is
typically very small, often less than 1%. In the second stage only the remaining M2 ⊂M1

markers having survived the cut after stage 1 are genotyped at the n2 subjects and tested

3 More details about testing and marker selection are given in section3.3
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Figure 3: Standard single stage design vs. 3-stage design

against the stage 2 threshold, for which the genotype data of both stages (1 and 2) is
combined in a joint analysis. Similarly, the set of markers M3 ⊂ M2 having survived
stage 2, are genotyped at n3 subjects and tested using all relevant data of stages 1, 2,
and 3 cumulated up to this point (figure 3). Depending on the total number of stages,
these steps are repeated until all stages have been processed. For each marker surviving
all stages, the null hypothesis is rejected and the marker is declared to show significant
association with the trait.
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3.2.2 Design cost

The cost of a GWAS for the most part consist of collecting the data, namely both the
phenotype and the genotype data4. To simplify matters, we assume that the cost of
phenotyping (CP ) a single individual is the same for each. In contrast, the genotyping
cost per individual is defined by the gene chip used to genotype the set of markers. Since
the set of markers shrinks with each stage of a multi-stage design, the applied gene chip
may change as well. At stage 1 typically a ”standard” gene chip is used, which contains the
full marker set under investigation. After that, gene chips customizable for a specifically
desired marker set are required. That is, depending on the markers selected as a result of
the interim analysis after stage 1, the researcher is going to order customized gene chips,
which just contain the set of selected markers. Of course, the customized chip carrying
fewer markers should be lower in cost than the ”standard” chip to be worthwhile. Also
it is reasonable to assume that there is only one single type of chip used at a particular
stage. The type of gene chip is defined by its capacity, that is, the number of markers
placed at the chip. Formally, let c = (c1, c2, . . . , cn) be the monotonely increasing sorted
sequence of available capacities, that is, i ≤ j ⇐⇒ ci ≤ cj. Furthermore, let Pr(ci)
denote the price of the chip with capacity ci, i ∈ 1, . . . , n, respectively. In practice there
is usually a rebate with respect to the number of ordered chips. We therefore extend the
price function to Pr(ci, q), which is the price of the chip with capacity ci when ordered in
quantity q ∈ N. Now for any two capacities ci and cj we expect the following monotonicity
condition to hold:

ci ≤ cj ⇐⇒ Pr(ci, q) ≤ Pr(cj, q) (1)

In other words, the prices of gene chips are proportional to their capacity, which in practice
usually does not follow a linear relationship as there is typically also a rebate regarding
the number of markers placed at the chip, or formally, the ratio Pr(ci, q)/ci, which is
nothing else than the ”price per marker”, is decreasing with an increasing capacity. In
total, the cost of a multi-stage design with S stages are then computed as

S∑
i=1

ni (CP + Pr(ci, ni)) (2)

3.3 Statistical analysis and marker selection

The program at hand computes and optimizes multi-stage designs and, with that, pro-
vides stage-wise two-sided nominal significance thresholds α1, α2, . . . , αS. Then for each
marker, the probability to survive stage s can be computed as∫ ∞
cs

· · ·
∫ ∞
c2

∫ ∞
c1

fµ,Σ (x1, . . . , xs) dx1 dx2 · · · dxs +

∫ −cs
∞

· · ·
∫ −c2
∞

∫ −c1
∞

fµ,Σ (x1, . . . , xs) dx1 dx2 · · · dxs

4There might be cost with respect to other aspects, for example, statistical analysis, data management,
and so on. Here we assume these to be negligible small in comparison with the total cost to keep matters
simple.
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where f is the multivariate normal distribution of the (asymptotically) normally dis-
tributed test statistics T1, T2, . . . , Ts obtained at the corresponding stages. The integration
bounds are computed as ci = Φ−1(1− αi/2). Figure 4 provides a schematic presentation
of the integrated area for the case of two stages.

T1

T2

c2

c1

-c1

H
0

H
1

-c2

Figure 4: Schematic display of the integrated area (blue) of a two-stage design under H0

(green) and under H1 (red).

Selecting markers

As soon as all subjects at some stage i are genotyped, for each marker, the researcher
computes an appropriate test statistic such as Armitage’s test for trend (Sasieni, 1997) and
derives a corresponding two-sided p-value pi under H0. For example, if the test statistic is
standard normal distributed under H0 (i.e. T ∼ N(0, 1)), then pi = 2 · (1−Φ(|ti|)), where
ti is the test statistic observed at stage i. It is important to note that the test statistic at
stage i is computed by using all data of the particular marker that has been accumulated
up to this stage and not only the data gained at the particular stage. This results in a
joint analysis (Skol et al., 2006) and can be seen as kind of updating the marker’s statistic
stage by stage using the additionally gained data. A marker is carried over to the next
stage if and only if the following two conditions apply:
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1. pi < αi

2. Equal signs of the test statistics at each stage (i.e., sign(t1) = sign(t2) . . . = sign(ti))

The second point basically implies that the disease causing (or risk) allele is not changing
over the stages.

3.4 Design optimization

3.4.1 General notes

First of all there is no easy standard method to obtain the most optimal multi-stage
design in any situation. Apart from practical considerations and constraints, optimizing
multi-stage designs, especially complex designs of three or more stages, requires kind of
a supervised step-wise approach in order to get a good result. Thus, unless being coped
with an easy 2-stage design problem, you will not be able to enter your setup, press start
and let OMD do all the work for you. Instead, OMD should be rather considered a tool
that helps in the search and construction of efficient multi-stage designs.

3.4.2 Workflow

In general one should start with a single-stage design. In doing so, unrealizable parameters
can be detected right at the start. For example, if the single-stage design does not yield
the desired power for a given parameter set, a multi-stage design never will, because multi-
stage designs are always (although only slightly) worse in power than single-stage designs,
basically due to their multiple analyses at the different stages, statistically resulting in
a slight loss of efficiency. On the other hand, if the given parameter setup does yield a
valid single-stage design, one proceeds with the most simple multi-stage design possible,
a 2-stage design. Once an optimal 2-stage design is found, the number of stages can be
increased gradually. This allows monitoring the added benefit of extending the design,
which is important in practice, because, for each additional stage, the extra benefit should
exceed the extra effort of conducting the additional stage (Pahl et al., 2009). The gradual
approach moreover allows for gradual validation of the optimization results.

3.4.3 Gradual validation

The optimum of a lower-staged design basically serves as a lower bound for a design with
more stages. Using the gradual approach, non-optimal results can be catched this way.
Thus, as soon as a multi-stage design did not result in a better optimum after a stage
had been added, the search algorithm might not have succeeded to find the true global
optimum. Besides that, often at some point, adding a stage will show no further benefit
anyway. This kind of ”over-staging” effect is mainly ascribed to the discrete nature of
the optimization problem caused by the utilization of marker chips, which provide marker
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sets of only a few defined capacities. To see this, consider a simplified example: Let the
available chipset consist of two chips C1 ($10) and C2 ($1) with a capacity of 500,000
and 1 marker(s), respectively. Now for some stage, unless the set of markers has been
shrinked to less than ten markers, the most efficient solution will be to take chip C1. Since
a marker set thus small at most is expected to appear at the very last stage, shrinking
the marker set ”in between” will show no additional benefit cost-wise, and inserting more
stages hence at some point most likely will not improve the objective anymore. The
amount of optimization being possible hence depends to some degree on the variety of
different marker chips, and, as a rule of thumb, the number of different available chips
should at least exceed the target number of stages. A good indication for over-staging
is when the optimized design is using the same gene chip at two (or more) consecutive
stages. Another indicator are very ”small” stages, that is, stages that use comparatively
few subjects in comparison to the rest of the stages. Often these two indicators fall
together. Section 6 provides an exemplary use-case on how the above described workflow
is applied in practice.

3.4.4 Cross validation

Cross validation is done by re-optimization after constraint and objective have been
swapped. For example, imagine the study budget was fixed at $6,000,000 and the op-
timized multi-stage design yields a power of 82%. For cross validation the power is fixed
at 82% and the design re-optimized for minimal costs, which should result in costs of about
those $6,000,000. Should the cost significantly deviate from this, one of both searches did
not find the true global optimum in the first place. For example, if the second optimization
results in costs of only $5,000,000 (while maintaining the power of 82%), the first design
does not exploit the budget to a full extent. To solve this problem, one could re-start the
initial optimization but this time using the results of the second run as a starting point.
For an example see section 7.1.1.

4 Parameters and options

This section explains the standard program parameters and options one by one and with
to some extent comprehensive descriptions in the context of GWAS analysis. A short
description of each parameter can be always obtained by using the GUI’s tooltips, which
are accessed by moving the mouse cursor over the corresponding field. Starting the OMD-
module initially shows the window as depicted in figure 5 except the advanced options,
which are hidden by default but can be unfolded at any time by clicks on the corresponding
expander triangles. For the sake of completeness, here and in the following we depict
the advanced options as well. Basically, the major part contains several fields of input
parameters and options, which are divided into the four tabs Study, I/O, Optimization,
and Result. If a field requires the user to manually enter some value, any invalid entry is
marked immediately with a red error-symbol to the right.
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Figure 5: The OMD Study tab at program start with unfolded advanced options (blue
rectangles)

The optimization is started with the large Start-button located below the tab, and at the
very bottom the user will get status updates during the optimization process.

4.1 Study

On a general note there are a total of five mandatory parameters without default values,
which therefore must be always set by the user. Four of them are located in the study
tab, which can be seen by the initially appearing red error-symbols (see figure 5).

Markers

• Number of markers: total number of genetic markers (or SNPs) at the start of the
study

• Alpha per marker : The program expects the user to set a marker-wise significance
level, say αm, which usually must be chosen such that the genome-wide type I
error is controlled at α = 5%. The choice of this parameters will have a great
impact on the outcome, the smaller αm, the more costly and the lower the power
of the study, respectively. One possibility is to take the Bonferroni approach and
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set αm = α/M , with M being the total number of markers, which basically corrects
α by the number of tests. However, this approach assumes complete independence
between all test (i.e., all markers), which in practice is never the case, and thus forms
the most conservative approach. Alternatively, the researcher may want to estimate
the effective number of independent tests Meff (Cheverud, 2001), which results in
a relaxed significance level αm = α/Meff. The idea behind the effective number
of independend test is to reflect the correlations between markers, which is caused
by linkage disequilibrium and does lead to dependencies between the markers and
thereby the tests. A widely accepted estimate for the total number of tests regarding
the entire genome is Meff = 1, 000, 000. This estimate might be improved for specific
marker sets (Cheverud, 2001), which however requires some data that reflects the
same set of markers that the estimate shall be based on.

• Disease marker: in general the program is assuming one disease (causing) marker
with a certain effect on the outcome. The effect size is specified in terms of odds
ratios (see below). While in the GWAS at hand there might be more than one
disease marker, the outcome of the corresponding optimal design will be basically
independent from the actual number of disease markers and therefore assuming just
one disease marker is sufficient. This comes from the fact that the number of disease
markers is usually only a very small fraction as compared with the several hundred
of thousands of non-associated null markers so that changing this small fraction
basically has no effect on the design. The statistical parameters determine how the
disease marker is modelled under the alternative hypothesis, which in turn has a
crucial impact on the study power that is achievable by the multi-stage design.

– Risk allele frequency: allele frequency of the risk (or disease causing) allele -
the smaller this value, the lower the study power.

– Odds Ratios: the odds ratio (OR) determines the assumed effect size – the
higher the odds ratios, the higher the power to detect a true disease marker.
It is defined for both one and two alleles versus no allele as follows:

OR1/0 = Odds(d = 1|r = 1)/Odds(d = 1|r = 0) (3)

OR2/0 = Odds(d = 1|r = 2)/Odds(d = 1|r = 0) (4)

where r = 0, 1, 2 is the number of risk alleles and d = 0, 1 the disease status.
Furthermore Odds(A|B) := P (A|B)/P (not A|B), where P (A|B) denotes the
conditional probability of A given B.

• Variance estimation (advanced): type of variance estimation assumed in the genetic
model. The user can choose between the standard pooled variance estimate (default)
or to assume variance estimation from the controls only. For further reference see
Zheng und Gastwirth (2006).
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Subjects

• Sample size maximum: In a planning phase of the study this number represents the
estimated maximum number of subjects that will be recruitable for genotyping. If
recruiting is already finished, it is simply the total number of recruited subjects.
Note that depending on budget restrictions or other study constraints, this number
may or may not be fully used by the resulting optimized multi-stage design.

• Case fraction: this fraction is defined as: (#cases)/(#cases + #controls). The
fraction is assumed to be constant over all stages. If a data file is provided (see
section 5.2), the fraction is determined automatically depending on how the samples
are distributed over the stages. Note that imbalanced fractions over different stages
can be modelled this way, which can have a great impact on the study power. For
example, the case fraction might be 0.5 at stage 1 and decreasing to 0.2 at stage
2. IMPORTANT NOTE: with the current version of OMD, the statistical model
internally applied for such imbalanced case fraction designs, is fully correct only
for 2-stage designs. For three or more stages, at this point, it can be regarded
an approximate solution to the problem, which, however, often is still better than
modelling the imbalanced fractions by a constant fraction, for example, by taking
the mean value of the stage-wise fractions.

• Subject cost: constant cost for each subject included in the study. This option is
used to model all costs that arise in addition to genotyping (i.e. gene chip) cost,
such as recruiting and phenotyping costs.

• Free of charge: the number of subjects that is free of charge (or has been paid
already), which means they do not cause any genotyping or phenotyping costs,
respectively. This option is most likely useful in a follow-up scenario, where a set of
subjects have been genotyped already in an initial study and now the sample size is
planned to be increased by recruiting/genotyping additional subjects, in order to be
analyzed alltogether in a joined analysis. As an example, consider an initial study
of 10,000 subjects and a planned sample of additional 20,000 subjects. In this case,
one would set ’Sample size maximum’ to 30,000 and the number ’Free of charge’ to
10,000.

• Detailed subjects data (advanced): this option is activated by setting ’Use file’ to
�Yes. The chosen file may contain detailed information about the study subjects
including (recruiting) costs and phenotype. For more details see section 5.2. Note
that activating this option invalidates all other ’Subject’ options as the corrrespond-
ing values now will be derived directly from the specified data file.

4.2 I/O

The second tab contains all relevant parameters regarding input and output of the program
(figure 6).
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Figure 6: The OMD I/O tab at program start and with unfolded optional design setup
specification (blue rectangle)

Input

• Chipset (*.xml): the last of the five mandatory input parameters: The chipset file
contains a set of gene chips along with their cost. OMD will source this file in the
process and optimally select chips to construct and plan the study. The specification
of the chipset must be done in the appropriate XML-format, for which a detailed
description is given in section 5.1. An example file named chipset5M.xml can be
found in the folder extdata/omd/chipsets, which is located in the installation folder
of GroupSeq++. You can get the full path by loading the package and then typing
the following into the R-console:

file.path(path.package("GroupSeqPP"),"extdata/omd/chipsets/chipset5M.xml")

• Design setup (optional): user-specified multi-stage design file, which can serve one
or more of the following purposes:

– set starting point(s) for optimization

– fix design parameters a-priori

– impose lower/upper bounds on design parameters

12



In particular, the *.xml output of any optimized design can be used as the input
file in order to re-optimize the design with different parameters, for example, using
a different optimization algorithm or targeting the opposite objective (see cross-
validation, section 3.4.4). For more details on the file format see section 5.3.

Output

• Directory: the location where output files are placed

• Prefix: Since one optimization run is producing several files of output, this prefix is
used to entitle the same prefix to all output files of a single run.

• 2 Save log into file: The core of OMD is based on a C++ library, which is producing
textual status output during optimization, which, in turn, is displayed in the R-
console. Checking this option will save all this output into a file [Prefix].log, that is,
by default into out.log.

• 2 Suppress console output: Suppresses the textual status output in the R-console.

4.3 Optimization

The ’Optimization’ tab (figure 7) is used to set the optimization objective, the number of
stages and the search (or optimization) algorithm.

Objective

• � Minimal cost: requires to set the desired study power. OMD will then try to
determine a multi-stage design, which provides minimal cost while at the same time
maintaining the desired power.

• � Maximal power: requires to specify the available study budget in dollars. OMD
will then try to determine a multi-stage design that provides maximal study power
while at the same time maintaining the budget.

• More constraints (advanced)

– 2Force full sample size: Forces the optimization to be done with the maximal
available sample, that is, the last stage is fixed at the value entered in the
’Sample size maximum’ field in the ’Study’ tab.

– 2Allow full chip after first stage: Allow application of the chip that was used
for (full) genotyping) at stage 1 also be used at stage 2 (normally a smaller
chip is forced to be used assuming a shrinking marker set).
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Figure 7: The OMD Optimization tab at program start with unfolded advanced options
(blue rectangles)

– Min stage size: the minimum sample size number that must be fulfilled in each
stage. A minimum stage size can be useful for practical reasons, for example,
to ensure some minimum rebate regarding the ordered gene chip. The value
must be chosen such that (minsize)*(number of stages) ¡ (max sample size).

– Constraint tolerance: Relative tolerance of maintaining the constraint that is
set at the top of the window. If the user sets a budget constraint of, say,
1,000,000 using the default tolerance of 0.01 (i.e., 1%), the target design may
cost 1,000,000 +/- 10,000.

Increasing the default value is most likely to be useful in situations where
a budget constraint has been set but the cost function appears to be very
sparse, most often caused by sparse chipset. In this case, increasing the value
helps tweaking the optimization, since it allows for more valid outcomes of
the function in terms of fulfilling the constraint. Note that regardless of the
tolerance, OMD will still always try to fulfill the constraint as exact as possible.

Detail

• � Algorithm: OMD seeks to find both optimal alpha levels and an optimal al-
location of sample size at each stage. While the search of alpha levels is beyond
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the user’s control, the optimization algorithm searching for the optimal sample size
allocation can be specified by the user. OMD in its current version provides three
different algorithms: a systematic global search by Jones et al. (1993), a controlled
random search algorithm as defined by Kaelo and Ali (2006), and a local variant
by Powell (1994), all being implemented in the NLopt library (Johnson (2010)).

The systematic exhaustive search (default) is the only algorithm that does not allow
for user-specified starting values and is the most stable of the three, which is why
one should generally start with this one. Moreover, with at least somewhat complex
multi-stage designs (i.e., three or more stages), the local algorithm will often fail
to find any reasonable (i.e., nearly globally optimal) solution to the problem. For
this reason, the local algorithm is best used to sharpen an initial exhaustive search,
using the initial result as a starting point (for more details see section 6).

The controlled random search relies on a genetic algorithm and is somewhere in
between the systematic exhaustive and the local search, that is, it usally converges
faster than the exhaustive but slower than the local search, respectively. Since it
accepts starting values, it can be also used to sharpen results of an initial systematic
search. On the other hand, it can be applied as an initial global search, especially if
the default search, which is based on systematic division of the search domain into
smaller and smaller subregions, is struggling, for which two basic points might can
be indicative:

1. the resulting ”optimum” is worse than that of an optimized design with less
stages but otherwise identical setup

2. one or more of the resulting sample proportions5 are very smooth (e.g. 0.4
instead of 0.4038) indicating failure (or at least insufficient searching time) to
divide into smaller subregions

In addition, the controlled random search involves some randomness in its search
space, so that it is possible to obtain a ”non-deterministic behaviour” by changing
the random seed value using the advanced convergence options (see below).

• � All: Applies all three algorithms in a subsequent chain going from top to bottom.
As soon as one search has converged, the next algorithm is invoked, using the best
result obtained thus far as starting values for the current run.

Since ”real” convergence can take very long with the first two search algorithms, it
is recommended to set some max runtime limit (see below) with this option, which
then is distributed in fractions of 1

2
, 1

3
, and 1

6
among the three algorithms, in that

order, that is, the initial search obtains half, the second search a third, and the final
search, which can be considered as a local sharpening of the optimum, a sixth of
the totally available time, respectively.

5 sample proportion = (cumulative number of subjects) / (total number of subjects)
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• Number of stages: The desired number of stages of the multi-stage design. Generally,
the more stages are used, the more can be optimized but the more complex the
design. Also the amount of optimization that is possible depends on the variety of
gene chips available (see also section 3.4). In practice, often three or four stages are
the best choice (Pahl et al., 2009).

• Convergence (advanced)

– Cap function evaluation: increasing this parameter will decrease the total run-
time but at the same time the accuracy of optimization. Internally the number
of function evaluations during the optimization process of the significance levels
are capped. The parameter ranges from 0 (no cap) to 1 (full cap), where the
latter basically means that the optimal significance levels are almost guessed.
As a result, increasing this value may result in suboptimal results and therefore
is best used for initial explorative optimization runs.

– Max runtime (seconds): stop the optimization at the latest after the specified
amount of time (0 = disabled). Since the optimization can be stopped manually
at any time using the ’Stop’ button, this option is most useful with the �All
option being activated in order to ensure that all algorithms are in fact applied
as opposed to getting stuck with the first exhaustive search. In this case, the
max runtime will be divided evenly among all search algorithms.

– Convergence tolerance: relative convergence tolerance of the search algorithm,
that is, basically the optimization is stopped, when an optimization step changes
the objective function value by less than the tolerance value multiplied by the
absolute function value (< 0 = disabled). Especially when minimizing the
cost, due to the discrete nature of the cost function (since it is based on real
chipsets), it can take very long for a search algorithm to converge.

– Random seed: the random seed used for the controlled random search algo-
rithm.

5 File formats

5.1 Chipset file (*.xml)

Any chipset file must be kept in an XML-format as follows: a chip is specified via a <chip>

tag and each chip specification must provide the following entries/tags:

Chip specification

<chip>

<name> <!-- name of the chip --> </name>

<capacity> <!-- no. of markers/SNPs --> </capacity>

<pricing> <!-- price of the chip --> </pricing>

</chip>
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The actual cost of the chip, are set by a <price> tag within the <pricing> tag, for
example:

Chip with a single price

<chip>

<name> iSelect7600 </name>

<capacity> 7600 </capacity>

<pricing>

<price> 174 </price>

</pricing>

</chip>

If the user wants to model discount price structures, he or she must set a <discount> tag
within the <pricing> tag, where each discount entry must contain a piece number along
with the corresponding price, for example:

Chip with discount price structure

<chip>

<name> iSelect7600 </name>

<capacity> 7600 </capacity>

<pricing>

<discount>

<piece_number> 2304 </piece_number>

<price> 174 </price>

</discount>

<discount>

<piece_number> 5760 </piece_number>

<price> 142 </price>

</discount>

<discount>

<piece_number> 11520 </piece_number>

<price> 125 </price>

</discount>

</pricing>

</chip>

All piece numbers are treated as lower bounds for the discount, that is, in the above
example, the chip is costing 174 only if 2,304 or more chips are requested and unless
the number of chips reaches (or exceeds) 5,760, in which case the second discount step
applies, dropping the price to 142. In consequence, this chip type will not be available at
all should the number of requested pieces fall below 2,304.
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5.2 Trait data

A trait file consists of a table with four (tab or space delimited) columns. Each row
defines an individual containing a unique ID, the individual’s name, costs associated with
the individual (e.g. recruiting costs), and its phenotype6. Any line starting with # is
considered a comment and hence ignored by OMD. The given order of entries (top to
bottom) will be used as the incoming sequence in the multi-stage design. The resulting
table may look as follows:

Example trait data

#id name cost phenotype

1 A 0 1

2 B 0 1

3 C 0 1

4 D 0 1

5 E 0 0

6 F 0 1

7 G 0 1

8 H 0 1

9 I 0 1

10 J 0 0

...

This table is part of the file tiny sample.txt, which is found in the folder extdata/omd/trait.
Again, you can obtain the full path by loading the package and then typing the following
into the R-console:

file.path(path.package("GroupSeqPP"),"extdata/omd/trait/tiny_sample.txt")

5.3 Design file (*.xml)

A multi-stage design file must at least contain <stage> tags, which determine the total
number of stages. Also the <stage> tags must be given in the correct order, starting with
stage 1 (from top to bottom). Within each stage, in turn, two items can (but must not)
be specified:

Design file: stage specification

<stage>

<ncum> <!-- cumulative no. of subjects up to that stage --> </ncum>

<chip> <!-- name of the marker chip applied at that stage --> </chip>

</stage>

6At this point only binary phenotypes implying a case-control design are supported.
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5.3.1 Setting bounds

Brackets allow imposing lower and/or upper bounds on the <ncum> values, In particular,
there are four different kinds of possible brackets:

] x x is upper bound of the former stage
[x x is lower bound of the current stage
x] x is upper bound of the current stage
x [ x is lower bound of the next stage

While all brackets can be used in combination, the above order must be preserved, for
example, "][x][" and "][x" are both valid, while "[]x" is not. If x is lower and upper
bound at the same time (i.e. "[x]"), it is treated as a fixed parameter and will not
be subject to optimization at all. Furthermore note that both <ncum> and <chip> tags
can be fixed but single specific lower or upper bounds are not supported for chips and
therefore ignored if used with values from <chip> tags. In general all items left unspecified
or specified but not fixed represent free parameters, which are going to be optimized by
OMD. Values being specified without any bound are valid as well and just serve as starting
points in the optimization routine. As an example consider the file 5-stage-example.xml
located in extdata/omd/designs, which contains the design setup displayed in listing 1.
Again, it is important to note that any sample size set with an <ncum> tag is provided
as the cumulative sample size, that is, the total number of subjects being analyzed up to
(and including) the stage at hand. Going from bottom to top in listing 1, the sample size
at stage 5 has been fixed and thus will be not part of optimization. In contrast, at stage
4, the given value (40,000) will be just considered as a starting value by OMD and has
no further effect otherwise. For stage 3 there is no additional information at all but at
stage 2, the cumulative sample size is set to be at least 25,000 while stage 1 should not
exceed those 25,000. Finally, stage 1 shall process at least 10,000 subjects using the chip
denoted ’HumanOmni5’.

5.3.2 Special case - fixing values

The motivation behind fixing values is twofold. First, it simply models limitations occuring
in practice. For this, imagine an initial study that was completed with 10,000 subjects
and which is planned to be extended by another 30,000 subjects. If the type of chip used
in that initial study is still available, one just sets a lower bound for stage 1, namely
[10000. However, if this type of chip is not available anymore or due to other practical
limitations that require the stage to be regarded as completed, the first stage needs to be
fixed (i.e., [10000]). The second motivation is that each fixed parameter does not need
to be optimized anymore and therefore reduces the required computational effort in the
process of finding the optimal design. Of course, care must be taken, since binding or
fixing parameters can result in suboptimal designs. A special case in this context is to fix
the final sample at the maximal available sample size, which, instead of specifying it in
the design file, also can be achieved by activating the option ’Force full sample size’ in the
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5-stage-example.xml

<multistage_design>

<stage>

<!-- Stage 1: lower subject bound, fixed gene chip -->

<ncum> [10000 </ncum> <!-- At least 10,000 subjects at this stage -->

<chip> [HumanOmni5] </chip> <!-- Use HumanOmni5 chip (see chipset5M.xml)-->

</stage>

<stage>

<!-- Stage 2: subject bounds, unknown/free gene chip -->

<ncum> ][25000 </ncum> <!-- Maximally 25,000 subjects up to former stage

and at least 25,000 up to this stage -->

</stage>

<stage>

<!-- Stage 3: no specific constraints -->

<!-- The <stage>-tags are still needed to set the total no. of stages -->

</stage>

<stage>

<!-- Stage 4: just suggest starting value (no constraint) -->

<ncum> 40000 </ncum> <!-- Start optimization using 40,000 subjects -->

</stage>

<stage>

<!-- Stage 5: fixed subject number, unknown/free gene chip -->

<ncum> [50000] </ncum> <!-- Exactly 50,000 subjects up to this stage) -->

</stage>

</multistage_design>

Listing 1: Example of user-defined 5-stage design setup

’Optimization’ tab (see section 4.3). For example, if an optimized 2-stage design already
spends the entire sample, a design using more than two stages will always do so as well,
so that fixing the last sample at the full size becomes a logical step in this case.

6 Use case - minimize study cost

At first we will seek to minimize the study cost as much as possible under the constraint
that the study has to maintain a certain power. Most of the results presented in the
following sections were derived with restricted running times (i.e. using the max runtime
limit option). The actual values may thus differ slightly in what you obtain when recalcu-
lating the examples on your own, depending on the speed of your computer for the most
part.
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6.1 Study setup

We start the OMD-module and enter some values into the Study tab as shown in figure 8.
That is, we plan a GWAS using not more than 40 000 subjects and a marker set consisting

Figure 8: OMD use-case study setup (entered values marked by red rectangles)

of 5 000 000 SNPs. Furthermore, the significance level (α = 0.05 × 10−6) relies on the
assumption of 1 000 000 effective tests as opposed to the 5 000 000 markers planned to be
investigated (for more details on the choice of α see section 4.1). The fraction of cases
throughout the entire sample is set to 25% and the allele frequency of the sought risk
allele is assumed to be 10% with an odds ratio of 1.2 and 1.4 for observing the trait if the
case has one or two risk alleles, respectively. To specify our chipset, we switch to the I/O
tab and select the accompanying chipset file chipset5M.xml (figure 9). Again, the chipset
file chipset5M.xml used here is found in the folder extdata/omd/chipsets, which is located
in the installation folder of GroupSeq++, and you can get the full path by typing

file.path(path.package("GroupSeqPP"),"extdata/omd/chipsets/chipset5M.xml")

into the R-console. To explore the chips specified in the file, you can either open it with a
text editor, your standard web browser, or some other XML-compatible viewer. In total,
the file lists seven different chips, with capacities of 5 100 000, 50 000, 16 700, 7 600, 384,
96, and 1 SNP(s), respectively. Most of the chip prices have been determined from the
JHU SNP Center (see http://snpcenter.grcf.jhmi.edu/pricing.html).
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Figure 9: Select the chipset file.

6.2 1-stage design

As described in section 3.4.2, we initially try for a simple single-stage (or 1-stage) design
to get an idea of the possible outcome. We start by requesting a rather high power of 95%.
For this, we switch to the Optimization tab, and set the parameters accordingly (figure 10).
We hit the Start button, which results in an error message, stating that the ”desired
power (0.95) is not achievable” with our sample size (figure 11). Apparently, the maximal
achievable power with the specified parameter setup is 92.487% (see figure 11). In order
to increase this value, we now could adjust the initial setup, for example, by increasing
the (maximal) sample or the assumed effect size (i.e., higher odds ratios or higher risk
allele frequency), respectively. Here we proceed by just lowering the power requirement
instead, and set the desired power below those 92.487% back to 80% (figure 12). Hitting
’Start’ again will show a new dialog (figure 13), this time, containing a valid result7. The
first line states that the ”Design has been solved successfully”. In fact, when calculating
1-stage designs, there is no optimization involved, because the design constraints (here:
0.05 · 10−6 type I error and 80% power condition) leave no parameters free to optimize.
That is, given the chosen constraints provide a solvable condition, there will be exactly
one correct 1-stage design for any setup, The new result implies the need of 33 198 out of
the maximal available 40 000 subjects in order to reach 80% study power. On a side note,
it had not been advisable to set the desired power to match the aforementioned 92.487%

7The 1-stage result output being displayed as an error message dialog at this point is not ideal and
will be improved in a future version of GroupSeq++.
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Figure 10: Select 1-stage design with 95% power.

Figure 11: OMD error dialog due to unreachable power.

exactly, because the single-stage design would exactly use all available individuals in this
case, but since multi-stage designs need to compensate for their multiple analyses, their
required sample size always exceeds that of a single-stage design with identical power. As
a result, there should be always some sample size cushion with the single-stage design
in order to be able to construct multi-stage designs, or in other words, the single-stage
design must never be constructed to fully exhaust the maximal available sample size.
A further result is that we are using the HumanOmni5 chip for all the 33,198 subjects
leading to costs of 2.08 · 107. While OMD will always select the cheapest chip among all
available chips with sufficient capacity, here the HumanOmni5 is the only chip that can
hold 5 000 000 SNPs anyway (see the chipset file).
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Figure 12: Set 80% power in the Optimization tab.

Figure 13: Result notification of 1-stage design solved for 80% power.

6.3 2-stage design

6.3.1 First run

Compared with the above obtained 1-stage result, for the 2-stage design, we expect a
slightly larger sample size but much lower study cost. Since the optimization process
can take some time until full convergence, for the sake of this tutorial, we will limit the
maximal running times in most cases. We start by setting a maximum of 30 seconds8 under
Detail→Advanced→Max runtime (seconds) in the Optimization tab (see figure 14). In
the scaler, we set the ’Number of stages’ to 2 and start the calculation. At first, you will
now notice the green bars at the bottom of the window, which show the current search

8A fully converging run took ∼1000 seconds for the example at hand, using an Intel® CoreTM i5 CPU
650 @ 3.20GHz x 4
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Figure 14: Setting up first run of the 2-stage design optimization.

status in the optimization process. The two different bars in this case represent the two
stage-wise proportions of samples from the total available sample size. The color codes
the number of markers expected to be genotyped at the corresponding stage – the darker
the color, the more markers. Below that at the very bottom, OMD tells us the last point
of time, when the optimum could be improved, which is useful when optimizing more
complex designs of three or more stages, where the optimization will take a lot longer
to converge. After about 30 seconds, the computation should stop showing the dialog as
depicted in figure 15. As stated there, the ”optimization has finished regularly” being

Figure 15: Result notification of the first 2-stage design optimization run.

halted due to reaching the maximum runtime limit we had set before. Furthermore, the
”results were output to” various places:

• Result-tab
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• R-console

• *.xml file

• *.csv file

The ”Result-tab” output is covered in the next section 6.3.2 followed by the R-console
output in section 6.3.3. Finally, the file output will be explained in section 6.3.4.

6.3.2 Output: ’Result’ tab

The main source for immediate inspection of results during the run is the ’Result’ tab
(figure 16). The results presented therein are updated on the fly. In particular, all relevant

Figure 16: Result tab after the first optimization run (30s runtime limit).

outcomes of the optimized multi-stage designs are shown, divided into the four higher level
categories Sample size, Probability, Marker chip, and Cost. For each of these categories,
the output can be folded/unfolded by clicking on the I/H placed next to them. From the
3rd column on, the outcome is displayed successively for each stage, from top to bottom:

• Sample size

– Stage-wise: sample size at that stage

– Cumulative: sample size accumulated up to this stage
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– Proportional: sample proportion relative to maximal sample size

– Case fraction: fraction of cases in that stage

• Probability

– Alpha: nominal significance level at this stage. Against this level the interim
p-value of a marker must be compared in order to decide whether it will be
carried forward to the next stage (see also section 3.3)

– Cumulative alpha: the accumulated type I error. At the final stage, this should
always be equal to the total type I error risk as specified by the user prior to
optimization in the ’Alpha per marker’ field.

– Cumulative power: the cumulative power to detect the disease marker. The
total power to detect a disease marker using this design, again, can be derived
from the value obtained at the final stage.

• Marker chip

– Type: type (or name) of the chip

– Capacity: marker capacity of the chip used in that stage

– Expected no. of markers: the expected number of markers at that stage, when
applying the above significance thresholds to decide which markers are carried
forward to a next stage

– Price per chip: the cost per chip used at this stage

– No. used per subject: the number of chips needed for each subject (if the
capacity of a particular chip is smaller than the expected number of markers,
more than one chip might be required)

• Cost

– Stage-wise: cost of the design at that stage

– Cumulative cost: cost accumulated up to this stage

Figure 17 again presents the Result tab, this time also highlighting the most important
parts of the outcome9. The cumulative sample size (blue rectangle) determines the size
of each group and basically forms the ”shape” of the obtained multi-stage design. Under
Probability you should always double-check that your pre-specified constraints – in our
case ’Alpha per marker’ = 0.05e-06 and Power = 0.80 – are maintained (red rectangle),
which is the case here. Finally, the optimized (i.e., minimized) objective, namely the cost
of the design, result to about 11 940 000 (green rectangle), which is 8 860 000 less than (or
57% of) the 1-stage design. With a total sample size of 37,350, as expected, it exceeds

9All results being derived with a runtime limit can vary from machine to machine depending on
their CPU speed, so if you re-run the presented examples, your outcomes may differ slightly from those
presented in this tutorial
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Figure 17: Highlighted results of the cost-minimized 2-stage design

the 1-stage sample by 4,152 subjects, although still not consuming all of the maximally
available 40,000 subjects. This can be seen also from the ’Proportion search status’ at
the bottom, leaving some white space at the most right of the green bars. On a side note,
considering the case fraction at stage 1, we observe that it does not exactly equal the
requested value of 0.25 (or 1/4), which just arrises from the fact that the stage 1 sample
size of 13 334 including cases and controls, has a non-zero remainder when divided by 4.

Next, we examine the gene chips applied with the optimized design by unfolding the
’Marker chip’ category and hiding ’Sample size’ and ’Cost’ (figure 18).

28



Figure 18: Applied gene chips of the cost-minimized 2-stage design

Of course, stage one is using the Human Omni 5 chip again, being the only chip that
covers the starting marker set of 5 000 000 SNPs. However, the low significance threshold
at stage one (Alpha = 0.003339595, figure 18) basically lets only those markers through,
which show the top 0.3% highest test statistics after stage one, so that the number of
markers is expected to have been dropped down to 16 699 at stage 2. Since the Illumina®

iSelect chip with a capacity of 16 700 proves to be the most cost effective chip in this
case, it is chosen for stage 2. In particular, the next bigger chip, the iSelect50000 (see
file chipset5M.xml), would be filled only for about 33% and costing more than twice. The
next smaller chip, the iSelect7600, is costing only 125 given the requested piece number
(i.e., 24 016 subjects, re-unfold the Sample size category to see this number), but we
would actually need three (differently) customized chips per subject to cover the expected
number of markers, resulting in more than twice the cost as well. Of course, the fact
that the expected number of markers is fitting nearly perfectly to the capacity of the
iSelect16700 chip is no accident but a result of the optimized significance thresholds.

6.3.3 Output: R-console

Unless suppressed by the user (see section 4.2), OMD also puts an on-the-fly output into
the R-console, which can be used (a) as a logging output and (b) to follow the optimization
process, thereby providing information about the status of convergence of the search10.
Too see this, we take a look of the console output of the previous run (∼ 3 pages long):

10It is planned to provide a graphical presentation of the search process in a future version of OMD.
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2-stage optimization run - R-console output)

############

# OMD-Tool #

############

+-----------------+-----------------+------------------+

| OMD | v0.1.1 | 19/Apr/2013 |

| Optimized Multi-stage Designs |

+-----------------+-----------------+------------------+

| Copyright (c) 2011-2013 Roman Pahl, IMBE Marburg |

| Distributed under the Boost Software License, v1.0 |

+------------------------------------------------------+

...Writing parameter config to ‘/home/pahl/out.2-stage.opt.budget.global.cfg ’ :

# Parameter values set by user:

alg = global

alpha = 5e-08

cap = 0

chipset = /home/pahl/chipset5M.xml

cost = 0

ctol = 0.01

frac = 0.25

markers = 5000000

nfree = 0

nmax = 40000

or1 = 1.2

or2 = 1.4

out = /home/pahl/out

power = 0.8

raf = 0.1

seed = 123456789

stage = 2

tmax = 30

tol = 1e-08

var = pooled

...Started at Fri Apr 26 14:19:39 2013

...Start optimizing 2-stage design...

...Results are updated/written on the fly in

Result-tab

R-console

/home/pahl/out.2-stage.opt.budget.global.xml

/home/pahl/out.2-stage.opt.budget.global.csv

...Searching initial solution...

...Time: Fri Apr 26 14:19:39 2013

...Optimized budget: 1.453e+07

sample size (cumulative) marker chip (capacity) cumulative cost

1 20000 (20000) 1 x HumanOmni5 (5100000) 1.254e+07

2 13334 (33334) 1 x iSelect16700 (16700) 1.453e+07

...Time: Fri Apr 26 14:19:39 2013
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...Optimized budget: 1.452e+07

sample size (cumulative) marker chip (capacity) cumulative cost

1 20000 (20000) 1 x HumanOmni5 (5100000) 1.254e+07

2 17778 (37778) 2 x Custom384 (384) 1.452e+07

...Time: Fri Apr 26 14:19:39 2013

...Optimized budget: 1.253e+07

sample size (cumulative) marker chip (capacity) cumulative cost

1 15556 (15556) 1 x HumanOmni5 (5100000) 9.754e+06

2 22222 (37778) 1 x iSelect7600 (7600) 1.253e+07

...Time: Fri Apr 26 14:19:40 2013

...Optimized budget: 1.236e+07

sample size (cumulative) marker chip (capacity) cumulative cost

1 14074 (14074) 1 x HumanOmni5 (5100000) 8.824e+06

2 23704 (37778) 1 x iSelect16700 (16700) 1.236e+07

...Time: Fri Apr 26 14:19:40 2013

...Optimized budget: 1.235e+07

sample size (cumulative) marker chip (capacity) cumulative cost

1 15556 (15556) 1 x HumanOmni5 (5100000) 9.754e+06

2 20740 (36296) 1 x iSelect7600 (7600) 1.235e+07

...Time: Fri Apr 26 14:19:40 2013

...Optimized budget: 1.214e+07

sample size (cumulative) marker chip (capacity) cumulative cost

1 14074 (14074) 1 x HumanOmni5 (5100000) 8.824e+06

2 22222 (36296) 1 x iSelect16700 (16700) 1.214e+07

...Time: Fri Apr 26 14:19:41 2013

...Optimized budget: 1.197e+07

sample size (cumulative) marker chip (capacity) cumulative cost

1 13581 (13581) 1 x HumanOmni5 (5100000) 8.515e+06

2 23209 (36790) 1 x iSelect16700 (16700) 1.197e+07

...Time: Fri Apr 26 14:19:44 2013

...Optimized budget: 1.197e+07

sample size (cumulative) marker chip (capacity) cumulative cost

1 13416 (13416) 1 x HumanOmni5 (5100000) 8.412e+06

2 23868 (37284) 1 x iSelect16700 (16700) 1.197e+07

...Time: Fri Apr 26 14:19:44 2013

...Optimized budget: 1.196e+07

sample size (cumulative) marker chip (capacity) cumulative cost

1 13562 (13562) 1 x HumanOmni5 (5100000) 8.503e+06

2 23228 (36790) 1 x iSelect16700 (16700) 1.196e+07

...Time: Fri Apr 26 14:19:46 2013

...Optimized budget: 1.194e+07

sample size (cumulative) marker chip (capacity) cumulative cost

1 13361 (13361) 1 x HumanOmni5 (5100000) 8.377e+06

2 23923 (37284) 1 x iSelect16700 (16700) 1.194e+07
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...Time: Fri Apr 26 14:19:49 2013

...Optimized budget: 1.194e+07

sample size (cumulative) marker chip (capacity) cumulative cost

1 13343 (13343) 1 x HumanOmni5 (5100000) 8.366e+06

2 23996 (37339) 1 x iSelect16700 (16700) 1.194e+07

...Time: Fri Apr 26 14:19:49 2013

...Optimized budget: 1.194e+07

sample size (cumulative) marker chip (capacity) cumulative cost

1 13359 (13359) 1 x HumanOmni5 (5100000) 8.376e+06

2 23925 (37284) 1 x iSelect16700 (16700) 1.194e+07

...Time: Fri Apr 26 14:19:51 2013

...Optimized budget: 1.194e+07

sample size (cumulative) marker chip (capacity) cumulative cost

1 13343 (13343) 1 x HumanOmni5 (5100000) 8.366e+06

2 23990 (37333) 1 x iSelect16700 (16700) 1.194e+07

...Time: Fri Apr 26 14:19:54 2013

...Optimized budget: 1.194e+07

sample size (cumulative) marker chip (capacity) cumulative cost

1 13343 (13343) 1 x HumanOmni5 (5100000) 8.366e+06

2 23988 (37331) 1 x iSelect16700 (16700) 1.194e+07

...Time: Fri Apr 26 14:19:57 2013

...Optimized budget: 1.194e+07

sample size (cumulative) marker chip (capacity) cumulative cost

1 13342 (13342) 1 x HumanOmni5 (5100000) 8.365e+06

2 23989 (37331) 1 x iSelect16700 (16700) 1.194e+07

...Time: Fri Apr 26 14:19:58 2013

...Optimized budget: 1.194e+07

sample size (cumulative) marker chip (capacity) cumulative cost

1 13342 (13342) 1 x HumanOmni5 (5100000) 8.365e+06

2 23988 (37330) 1 x iSelect16700 (16700) 1.194e+07

...Time: Fri Apr 26 14:20:00 2013

...Optimized budget: 1.194e+07

sample size (cumulative) marker chip (capacity) cumulative cost

1 13335 (13335) 1 x HumanOmni5 (5100000) 8.361e+06

2 24016 (37351) 1 x iSelect16700 (16700) 1.194e+07

...Time: Fri Apr 26 14:20:03 2013

...Optimized budget: 1.194e+07

sample size (cumulative) marker chip (capacity) cumulative cost

1 13334 (13334) 1 x HumanOmni5 (5100000) 8.36e+06

2 24017 (37351) 1 x iSelect16700 (16700) 1.194e+07

...Time: Fri Apr 26 14:20:04 2013

...Optimized budget: 1.194e+07

sample size (cumulative) marker chip (capacity) cumulative cost
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1 13334 (13334) 1 x HumanOmni5 (5100000) 8.36e+06

2 24016 (37350) 1 x iSelect16700 (16700) 1.194e+07

###########

# 2-stage #

###########

...Design optimization has finished regularly (max runtime reached).

...Results were output to

Result-tab

R-console

/home/pahl/out.2-stage.opt.budget.global.xml

/home/pahl/out.2-stage.opt.budget.global.csv

...Finished at Fri Apr 26 14:20:09 2013

...Total runtime: 30 seconds

After some general information and parameter configuration at the top, the on-the-fly
output follows. Each time a new optimum is found, a small table is printed displaying
the interim result regarding three important design parameters: the sample size, the
applied marker chip, and the cumulative cost of the design. In contrast to the ’Result’
tab, here the stages are put row by row (i.e., not by column), so that the row numbers
denote the corresponding stage. Thus, the cumulative sample size and cost in the last row
equal the total sample size and the total cost of the design, respectively. In addition, the
optimized objective (here ”Optimized budget”) is put at the top of each table, allowing to
quickly follow the optimization process. As can be seen, when reaching convergence, the
improvements of the objective value get smaller and smaller. Towards the end of the run,
they in fact have fallen beyond the accuracy of the depicted (rounded) value, indicating
that the search has nearly converged to the actual optimum. As soon as computation has
stopped, some status information is placed at the very end, here again stating that the
optimization was halted by reaching the specified maximum runtime.

To sum up, the R-console output serves as a easy to read logging about the progress
of convergence. If this is not desired by the user and/or if he or she wants to use the
R-console for different things while leaving OMD running in the background, the output
can be turned off at any time by activating the ”Suppress console output” checkmark in
the ’I/O’ tab.

6.3.4 Output: *.xml and *.csv files

For every optimization run, two output files are generated from the start. More precisely,
as soon as OMD has found a first solution to the optimization problem, it starts writing
out the current best result on the fly into these two files, which are always of type *.xml
and *.csv, respectively. Each time OMD can improve the optimum, it will then update
(i.e., overwrite) these files, which allows for stopping the optimization process at any

33



time and still have access to the most recently found solution in these files. The *.xml
file contains the last found optimal design according to the OMD design file format (see
section 5.3) and therefore is suitable to be used as a design setup for future runs (see also
7.1.2). The *.csv file provides a comprehensive and human readable description of the
optimization result, similar to that displayed in the ’Result’ tab ( section 6.3.2) and is
best used for comparing and storing different runs.

The names of the output files are generated automatically indicative of the task they were
generated from. The file out.2-stage.opt.budget.global.xml in this context implies
the output of a 2-stage optimization run where the budget was optimized using the
global search algorithm. Besides its informative character this also eases the usage of
the program, for example, when performing the optimization with a different algorithm
so that the user does not have to specify new output names for every single run.

6.3.5 Forcing the full sample

Earlier we have calculated the 1-stage design, for which there exists exactly one solution
for the sample size in order to fulfill both the α = 0.05× 10−6 significance threshold and
the 80% power condition, namely a sample size of 33,198. In contrast, there are many
possible 80% power 2-stage designs using different thresholds and sample sizes, of which
we had just tried to find the most cost efficient one using the optimization functionality
of OMD. To further illustrate this, we re-run the optimization but this time will force
OMD to use the full (i.e. maximal) sample of 40,000. For this, we set a checkmark in the
corresponding box (figure 19b) and change the output prefix to ”ffull” (figure 19a), the
latter in order to not overwrite the result of the previous run. Note that if you want to

(a) Enter ”ffull” as output prefix (b) Check ’Force full sample size’ box

Figure 19: Prepare 2-stage design optimization with forced full sample size.

compare the results within the GUI, you could have also opened another OMD-window
from the main menu, re-enter the parameter setup11 and proceed from there. We start the
optimization and immediately notice that this time the proportion search status is filled

11The option to save/load parameters is planned to be integrated in a next version of GroupSeq++.
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completely by the green bars. After about 30 seconds again, your ’Result’ tab should look
similar to figure 20. The resulting costs of about 1.21 · 107 are just about 160,000 worse

Figure 20: Result tab after the second run with forced full sample (30s runtime limit).

than that of our initial 2-stage design. While the applied marker chips remained the same
for both designs, the number of subjects at stage 1 has decreased from 13,334 to 12,840.
This is reasonable, because the marker set must be shrinked significantly after stage 1 and
since the second variant is using the full sample, it can (or must) drop markers earlier in
the study and still retains 80% power. The signififance (or Alpha) threshold went down
a notch as well in this context, namely from ∼0.33% to ∼0.31% so that stage 1 not only
is smaller but also lets fewer markers (15 420 in expectation) pass through to stage 2. As
a result, the cumulative power at stage 1 has dropped from 85% to 82.6% for the second
design. On the other hand, the full sample design has a higher power at stage 2 due to a
larger sample size, at the end yielding a total power of 80% as well. We recognize that the
term ”cumulative” power is somewhat counter-intuitive, considering that the power values
are decreasing from stage to stage. It can be understood more intuitively in terms of a
cumulative type II error (1-power). In this context, the type II error of the second design
is higher (17.4% vs. 15%), which basically means there is a higher chance of throwing the
disease marker away after stage 1. On the other hand, should the disease marker survive
stage 1, there will be a higher chance to detect this marker at the final analysis, which,
again, makes up for the initial loss of power. All in all, expecting 15,420 markers at stage
2 while the chosen chip could carry 16 700, is the reason why this design is not optimal.
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6.3.6 Set sample size bounds

Forcing the full sample is just a special case of imposing constraints on the sample size
allocation prior to design optimization, in this case fixing the sample size for the last
stage at the maximum. Beyond that OMD accepts lower and upper bounds or fixed
sample sizes at every stage as well as the applied chip to be used (see also section 5.3). To
illustrate this, we start with a simple case, where the number of subjects at stage 1 is fixed
at 5 000. A corresponding design specification can be found in file 2-stage-fix5k.xml (see
listing 2). We tell OMD to use this design specification using the optional ’Design setup’

2-stage-fix5k.xml
<multistage_design>

<!-- Stage 1 -->

<stage>

<ncum>[5000]</ncum> <!-- Use 5,000 exactly subjects at stage 1 -->

</stage>

<stage>

<!-- Stage 2 -->

</stage>

</multistage_design>

Listing 2: Example 2-stage design with fixed sample size at stage 1

option in the ’I/O’ tab (figure 21a) and change the output prefix from ’full’ back to ’out’
again. In addition, we un-check the ’Force full sample size’ option, because otherwise both
sample sizes would be fixed, which would leave nothing to optimize anymore. (figure 21b).
Rerunning optimization should result in the design displayed in figure 22. It becomes

(a) Select design setup file (b) Clear ’Force full sample size’ box

Figure 21: Prepare 2-stage design optimization with a fixed stage 1 sample size.

immediately apparent that the total costs have increased massively, which is basically a
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Figure 22: Result tab after 2-stage design optimization with stage 1 fixed at sample size
5 000 (30s runtime limit).

direct consequence of the imposed design restriction in combination with the available gene
chips. More precisely, since the first analysis is using a much smaller sample (5 000) than
the optimal design (13 334), it must not drop too many markers at this early stage to be
able to retain the desired study power. The next smaller available chip (see chipset5M.xml)
can carry 50 000 markers, which, however, is not enough to retain 80% power at the end.
That is, the 5 000 subjects at stage 1 provide comparatively little information, which
in fact requires to carry about 16% (799 500 markers, see ’Expected no. of markers’,
figure 22) of the full marker set forward to stage 2 in order to not drop any possible
disease marker too early. In addition, the total sample size had to be increased to almost
the full sample (39 808, not shown in the figure). Now covering those 799 500 markers at
stage 2, requires 16 of the iSelect50000 gene chips, which is so costly, that the resulting
2-stage design in fact is almost ten times as expensive than the 1-stage design, and thus
highly suboptimal.

6.3.7 Allow full chip at stage 2

Since two chips of the iSelect50000 type are already more expensive than the initially used
HumanOmni5 chip and more than 50 000 markers have to be carried forward to stage 2 in
the above example, the cheapest choice would be to use the HumanOmni5 chip again at
stage 2, so why did OMD not went for this option in the last optimization? The answer
is: OMD by default is not allowed to use the full chip after stage 1 as this will usually not
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yield the optimal design, because we always could ommit the interim analysis and put
both stages together to a single stage. Now fixing the first stage this early as done in the
above example, has resulted in a scenario, where ommitting the full chip at stage 2 does
not yield the ”best” suboptimal design. To see this, we temporary activate an option,
which allows OMD to use the full chip at stage 2 (figure 23). Re-running optimization

Figure 23: Activate option to allow the full marker chip at all stages.

results in the design displayed in figure 24.
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Figure 24: Re-run of 2-stage design optimization with stage 1 fixed at sample size 5 000
but using the full chip at stage 2 (30s runtime limit).

This time OMD is expecting to carry about 75% of all markers forward to stage 2 (”Alpha”
at stage 1: 0.749, ”Expected no. of markers” at stage 2: 3 746 008, figure 24), which retains
the power easily, because a true disease marker is now unlikely to get discarded at stage
1. However, with 2.1 · 107 the resulting ”optimized” 2-stage design is still slightly more
expensive than the 1-stage design (2.08 · 107). Chip-wise, of course, there is no more
difference of this 2-stage design to the 1-stage design, both using the same chip on all
subjects. However, since the 2-stage design has ”spent some alpha” at the first interim
analysis and for which it must compensate to maintain the total type I error, it requires a
slightly greater total sample size than the 1-stage design (here 33 519 vs. 33 198). Thus,
33 519 − 33 198 = 321 more of the HumanOmni5 chips are required, resulting in those
slightly higher cost at the end.

6.3.8 Follow-up Scenario

In our next example we want to impose a lower bound of 10,000 subjects at stage one. In
practice this may often occur with a kind of follow-up design, in which there is an existing
sample and the researcher wants to add more data in order to further increase the study
power or hunt for smaller effects. Now if there is an existing sample, genotyping has been
done already for the first 10,000 subjects so that the applied marker chip is fixed as well.
We therefore use the design specification from file 2-stage-gt10k.xml (see listing 3), which
is again ”loaded” in the ’I/O’ tab (figure 25a). More importantly, there will be no cost
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2-stage-gt10k.xml
<multistage_design>

<stage>

<!-- Stage 1 -->

<ncum>[10000 </ncum> <!-- Use at least 10,000 subjects -->

<chip>[HumanOmni5]</chip> <!-- Use HumanOmni5 chip -->

</stage>

<stage>

<!-- Stage 2 -->

</stage>

</multistage_design>

Listing 3: Example 2-stage design with lower bound at stage 1

(a) Select design setup file (b) Clear ’Force full sample size’ box

Figure 25: Prepare 2-stage design optimization with 10 000 cost-free subjects.

for the 10,000 subjects of the existing sample because they are already processed. This
information can be passed to OMD in the ’Study’ tab by entering the number of cost-free
subjects into the ’Free of charge’ field (figure 25b). We perform the optimization as usual
and inspect the result (figure 26). Of course, the total cost have dropped dramatically
now since the first 10,000 subjects were free of charge. However, the resulting design
parameters are basically identical to the very first optimized 2-stage design (figure 16),
which follows from the fact that setting the initial 10,000 subjects free of charge just
works as a negative offset to the optimization problem but does not change the shape of
the underlying cost function. In fact, we could have omitted the optimization and just
re-calculate the cost as follows:
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Figure 26: Result tab after 2-stage design optimization with 10 000 initial subjects free of
charge.

1.194 · 107 total cost of first design
− 10000 · 627 stage 1 cost of first design†

+ 3334 · 649 stage 1 cost of new design‡

= 5.743 · 106

†$627 per HumanOmni5 chip for >10000 chips
‡$649 per HumanOmni5 chip for >1881 but less <10000 chips

Note how the price for the gene chip at stage 1 has been increased due to a lower rebate,
in turn being caused by just needing to genotype 3 334 additional subjects at stage 1.

6.4 3-stage design

The optimized 2-stage design is expecting to genotype ∼ 16 700 markers at the second
stage, which still is quite a lot. To further break this down, we carry on with the follow-up
scenario and will add another stage using the the design setup contained in file 3-stage-
gt10k.xml (listing 4).

We again set the above design setup file (figure 27a), undo the ’Allow full chip after first
stage’ option (figure 27b), and increase the number of stages accordingly (figure 27b).

A first search still using the 30 seconds runtime limit should yield a result similar to
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3-stage-gt10k.xml
<multistage_design>

<stage>

<!-- Stage 1 -->

<ncum>[10000 </ncum> <!-- Use at least 10,000 subjects -->

<chip>[HumanOmni5]</chip> <!-- Use HumanOmni5 chip -->

</stage>

<stage>

<!-- Stage 2 -->

</stage>

<stage>

<!-- Stage 3 -->

</stage>

</multistage_design>

Listing 4: Example 3-stage design for a 10 000 subjects follow-up scenario

(a) Select design setup file (b) Clear ’Force full sample size’ box

Figure 27: Prepare 3-stage design optimization with 10 000 cost-free subjects.

figure 28, which presents a 3-stage design costing 7.4 · 106, that is, about 29% more
expensive than the optimized 2-stage design. Since we expect to improve with the added
stage (see also section 3.4.3), the design at hand cannot present a reasonable optimum.
This must be attributed to the 30 seconds maximum runtime, which apparently is not
enough time for a reasonable 3-stage design optimization. Considering the very smooth
stage-wise sample sizes (15 000, 10 000, and 10 000) also reveals that the search was likely
in an early phase of the optimization process. Another indication might be the use of
two customized chips for each subject at stage 2 (see ”No. used per subject” under
the H Marker chip category), which seems to be a rather expensive option to allocate
the available chips. Before we increase the runtime, however, we will first tweak the
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Figure 28: Result tab after 3-stage design optimization with 10 000 initial subjects free of
charge.

optimization a-priori by eliminating one optimization parameter based on the following
consideration: Since the optimal 2-stage design is almost using the full sample (37 350
of 40 000), and since higher staged designs – unless bounded – always demand further
increased sample sizes, we can basically assume that the optimal 3-stage design will use
the full 40 000 subjects sample. Thus, we can eliminate one parameter from the search
space by fixing the full sample again (figure 29a) and re-running the search now should
show an improved result similar as to presented in figure 29b. In particular, the cost could

(a) Force full sample size for 3-stage design
optimization.

(b) Result tab after 30 seconds of optimiza-
tion.

Figure 29: Optimize 3-stage design with fixed full sample.
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be further decreased to ∼5.498·106, thereby saving already 5.743·106−5.498·106 = 245 000
over the 2-stage design. However, the sample size numbers are as smooth as before, still
indicating that the search was aborted early. If we therefore increase the runtime limit
to 1 hour (figure 30), we obtain an optimized design as depicted in figure 31. This

Figure 30: Increase runtime limit to one hour.

time, the cost could be decreased already to 4.8 · 106, thus by almost a further 1 000 000
(or ∼17%) as compared with the optimized 2-stage design. As a result of the longer
run, the sample sizes are finer differentiated this time. Moreover, they are basically
distributed equidistantly among the stages. Inspecting the applied marker chips shows
∼ 16 700 markers to be expected at stage 2 again, but only 22 being carried forward to
stage 3, which is the major cause for the cost improvement over the 2-stage design, that
is, all in all, the marker set could be decreased more gradually.

In general a 3-stage design optimization should be run at least several hours to get a
reasonable result12, depending on the problem at hand and the variety of available gene
chips. Comparing the 3-stage design with the optimized 2-stage design, checking the
smoothness of sample sizes and, last but not least, inspecting the convergence process from
the R-console output, respectively, helps to evaluate the goodness of the optimization.

12After 24 hours of optimization (using one core of our Intel® CoreTM i5 CPU 650 @ 3.20GHz x 4),
the resulting 3-stage design showed a further cost reduction down to 4.65 · 106
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Figure 31: Resulting 3-stage design after one hour of optimization.

7 Use case - maximize study power

More often than not, in practice the researcher is faced with a fixed budget rather than
optimizing it as a free parameter. In this scenario, he or she will be interested in gaining
the maximum (study power) out of the available budget, which leads to our second opti-
mization task: maximize the study power given a fixed budget. From a numerical point
of view, the power function is ”nicer” than the cost function, because it can be considered
continuous, whereas the design’s costs appear as a discrete step-wise function, due to
the limited amount of different marker chips, as shown in figure 32. Optimizing discrete
functions is notoriously difficult, because it is generally not possible to calculate gradients
and OMD therefore is using derivative-free algorithms (see section 4.3). The smoothness
of the objective function also plays an important role in that if large ”flat” areas with
the same function value are part of the funcion’s range (figure 32), the optimization in
these areas is difficult for derivative-free algorithms as well. The smoothness of the cost
function in particular depends on the variety of available gene chips, that is, the more
chips available, the smoother the function.

With the power function being continuous and thereby smooth, the second task to op-
timize the study power, at a first glance, might appear easier than optimizing the cost.
However, the cost function actually is also part of the power optimization problem, namely
in terms of the budget constraint. In particular, it will sometimes not be possible to match
the (budget) constraint exactly, in which case the objective function will not be defined.

As a simplified example, consider the second stage of a 2-stage design with 10 000 individu-
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Figure 32: Price per subject as a function of both the number of subjects (determining
the amount of rebate) and the number of markers (determining the chip type).

als at stage 2 and available chip capacities as displayed in table 1. As a consequence, there

Table 1: Example of available capacities and prices of a corresponding gene chip.

Capacity 96 384 7 600 16 700 50 000
Chip price [$] 40 55 140 190 420

are only five possible values for the total genotyping costs of that second stage, namely
$40,00, $55 000, $140 000, $190 000, and $420 000, respectively. If we further assume that
stage 1 comes at no cost, these will be the only costs obtainable by this particular 2-
stage design. Now if for example the demanded budget was $300,000, there is no exact
solution to this requirement for the 2-stage design at hand. Of course, the adherence to
the constraint can be relaxed somewhat, but here even the closest choice (i.e., capacity
of 16 700 with $190 000 total cost) would deviate by $110 000 (or about 36%) from the
specified budget. The design using 10 000 individuals at stage 2 therefore has no valid chip
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configuration for this budget constraint regardless of the study power it would provide.

The above example shows that the power function, although being smooth in general,
may not be defined for a wide range of parameters. Since this is even less information
than a flat area of function values, our second task, the power maximization, therefore in
fact is more difficult than the minimization of the design’s cost as done in the previous
section. In the upcoming sections, we present another use case and provide some options
of how to deal with the constraint problem.

7.1 2-stage design

We will rely on the study setup used in section 6.3.8. Moreover, since we have opti-
mized this setup already, we can rely on the concept of cross validation as described in
section 3.4.4.

7.1.1 Cross validation

When minimizing the study cost before, we fixed the power at 80% and obtained an
optimized 2-stage design with cost of 5.742 · 106 (figure section 26). So if we reverse
this problem by fixing the budget at 5.742 · 106, we expect a similar 2-stage design with
80% power. If we arrive at a design with a power significantly lower than 80%, we will
know that this is not the true optimum. On the other hand, if we arrive at more than
80% power, the optimization in the last section was not truly optimal. To make sure
that your parameter setup is correct, we first reproduce the corresponding 2-stage cost
optimization from scratch with the parameter setup as displayed in figure 33. We run the
optimization and verify that we re-obtain a design with cost of 5.742 ·106. Next we switch
the objective and enter the obtained cost as the budget constraint (figure 34). Restarting
the optimization now should finish after 30 seconds with a result as displayed in figure 35.
First of all, double-checking the total cost (5 738 282, green rectangle), we see that the
specified budget constraint is maintained, and so is the significance level of 0.05 ·10−6 (see
’Cumulative alpha’). However, with 77.9% (red rectangle) the study power falls short by
about 2% to the expected 80%.

7.1.2 Using a previous result as starting point

Before we explain how this problem can be tackled using some of the advanced constraint
options (section 7.1.4), we will first present a different algorithm, the ’Controlled random’
search. This algorithm can take starting values, which we want to utilize in the next run by
using the result of the previous one. Since the output prefix was set to ’out’, the result of
the previous run was saved automatically into a file called out.2-stage.opt.power.global.xml,
which upon inspection should present as shown in listing 5. The format follows the
requirements of a design file (see secion 5.3) and as such can be used as a design setup.
Note that there are no brackets possibly defining any bounds so that all values will be
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(a) Study tab (b) I/O tab

(c) Optimization tab

Figure 33: Initial parameter setup still using the cost objective.

merely considered as suggested values by OMD to start the optimization with. After
selecting this file (figure 36a) and picking the algorithm (figure 36b), we restart the search
and obtain a new result (figure 37). Again the budget constraint has been preserved and
the objective could be increased to 79%, which is still too low with respect to the target
80% power.

The name of the algorithm implies that the ’Controlled random’ search involves some
randomness in its calculations. However, since OMD is using a fixed random seed for this
algorithm, the search will still show deterministic behaviour. On the other hand, the user
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Figure 34: Prepare power objective for 2-stage cross validation.

Figure 35: Result of power-optimized 2-stage design (first run, 30s runtime limit).
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out.2-stage.opt.power.global.xml

<?xml version="1.0" encoding="utf-8"?>

<multistage_design>

<stages>2</stages>

<stage>

<ncum>14918</ncum>

<chip>HumanOmni5</chip>

</stage>

<stage>

<ncum>35290</ncum>

<chip>iSelect7600</chip>

</stage>

</multistage_design>

Listing 5: Result output of optimized 2-stage design.

(a) Select design setup file of previous run. (b) Pick ’Controlled random’ search algo-
rithm.

Figure 36

has the possibility to modify this seed, which is set to 123456789 by default. To see the
effect of this, we change this value to 1234 (figure 38) and restart the optimization leaving
all other parameters unchanged. As a result, the search is taking a different ”path” now
and the obtained design (figure 39) not only has changed but this time also is arriving at
the target 80% power, with nearly exact exploitation of the pre-specified budget constraint.
At this point we have therefore at least cross-validated the 2-stage design obtained in the
previous section as a result of the cost-optimization. For a final verification we will apply
the third available ’Local’ search algorithm, possibly to locally refine the result obtained so
far. To do so, we first ”load” the optimized design of the last ’Controlled random’ search,
which was saved into a file called out.2-stage.opt.power.genetic.xml (figure 40a). and then
pick the ’Local’ search algorithm (figure 40b). Starting the search, depending on the speed
of your CPU, the entire run this time will probably not make use of the full 30 seconds
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Figure 37: Result of re-run using previous result as starting point with search algorithm
changed to ’Controlled random’.

runtime limit but abort earlier instead with the message displayed in figure 41, stating that
the ”optimization has finished regularly”, meaning a valid design has been obtained, but
that on the other hand ”no optimization” has taken place. The latter basically implies
that the local search could not further improve the design of the previous ’Controlled
random’ search, therefore ending up with the same result as in figure 39.

7.1.3 Algorithm chain

The step-wise approach presented on the last couple of pages consisting of hierarchically
build and re-calculated designs based on the results of the different algorithms can be
somewhat tedious and error-prone when performed manually. For this reason, OMD
provides the option to do ’All’ steps at once automatically (figure 42a). In particular,
using this option, OMD applies all three algorithms in a subsequent chain and as soon as
one search has converged, the next algorithm is invoked, using the best result obtained thus
far as starting values for the next run. To make sure that the entire chain of algorithms is
processed, that is, each algorithm gets applied, it is recommended to always set a runtime
limit when using this option. The total runtime limit then is distributed in fractions of
1
2
, 1

3
, and 1

6
among the three algorithms (for more details see section 4.3). Since this

would only leave 15, 10, and 5 seconds for our algorithms, we increase the total runtime
limits to 60 seconds (figure 42a). In addition, we assume that we have no information
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Figure 38: Change random seed for ’Controlled random’ search algorithm.

Figure 39: Result of the second run using the ’Controlled random’ search algorithm with
a changed seed.
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(a) Select design setup file out.2-
stage.opt.power.genetic.xml of previous
run.

(b) Pick ’Local’ search algorithm.

Figure 40

Figure 41: Dialog after finishing the ’Local’ search.

(a) Pick algorithm chain option ’All’ and in-
crease runtime limit

(b) Select initial design setup.

Figure 42

of previous runs yet and therefore restore the initial design setup by selecting the very
first design specification (figure 42b). After about 60 seconds of optimization you should
obtain a result like the one displayed in figure 43, Apparently the target power has not
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Figure 43: Result after run of the entire algorithm chain (option ’All’, runtime limit 60s).

been achieved again and the result is deviating significantly from the one obtained by
the ”manual chain” before. The reason behind this is that the seed for the ”Controlled
random” search, although being still set to the same value in the GUI, internally will
be different, because the program already has run for some time when starting with the
second search.

7.1.4 Relaxing the constraint tolerance

As noted earlier the total cost of the design can be thought of as a step-wise function,
because the actual cost per subject depend on both the number of markers, which de-
termines the chip type, and the number of subjects at that stage, which determines the
amount of rebate (figure 32). Due to this discrete structure, some price levels cannot be
obtained exactly, which transfers to the total design cost as well, that is, a certain budget
constraint may not be achievable with pinpoint accuracy. For this reason, OMD by default
is using a constraint tolerance of 1%, allowing for a relative deviation of the constraint
by ±1%. This is of particular importance for the optimization algorithm, because if the
constraint is not fulfilled, the optimizer will get little to no information about where the
objective function value is located for the computed parameter vector, typically obtaining
either ”undefined” or ±∞, and although there may exist a solution to the constraint near
the true optimum, the optimizing algorithm may fail to find its way to this optimum,
which was exactly what happened in some of the previous calculations.
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The number of undefined function values to some degree can be controlled via the con-
straint tolerance. To see this, we increase the constraint tolerance to 10% and re-run the
optimization using the entire algorithm chain (figure 44). We see that the target 80%

Figure 44: Increase constraint tolerance to 10%.

Figure 45: Result of re-run using default algorithm but with relaxed constraint tolerance.

power has been achieved again and the design overall is similar to that of figure 39.
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Generally there is no problem with increasing the constraint tolerance, even by more than
10%, because OMD regardless will try to solve the constraint as accurately as possible.
Basically the space of valid parameters is widened this way, which may both slightly
prolong the optimization process and at times make it more difficult to find the true
optimum. In any case, you should always pay extra attention as to how accurate the
constraint has been maintained for the final result.

To summarize cross validation should be always used to validate optimization results,
especially when opting for more complex designs of three or more stages. In this context
note that the most obvious cross validation would have been to just take the design
parameters that were obtained with the initial cost minimized design in section 6.3.8 and
use them as starting values. In general, however, one should proceed as shown here and
start the cross validation from fresh, because this way it is more likely to detect cases
where the first optimum failed to converge to (or at least near) the true global optimum.

7.2 3-stage design

Next we want to cross-validate the 3-stage design that was obtained in section 6.4 after
one hour of optimization. First, we again load the corresponding design setup (figure 46a).
Second, we enter the minimized budget (4.804 · 106) as the constraint, activate the ’Force

(a) Select design setup file (b) Optimization setup for 3-stage design.

Figure 46: Initial 3-stage parameter setup.

full sample size’ option, and increase the runtime limit to one hour. We start optimization
by using the default ”Exhaustive” search algorithm (46b). Figure 47 displays the result
after one hour of running time. With 77.2% (red rectangle) the resulting power is well
below the cross validation target of 80%. In addition, the cost of the design (4.394 · 106,
orange rectangle) is about 400 000 lower than the requested budget constraint, which is
almost 10%. The stage-wise sample sizes are not smooth but not very differentiated either.
Alltogether, the optimization process seems to have been stopped at a rather early stage,
which was kind of expected since the power maximization is the more difficult task of
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Figure 47: Power-optimized 3-stage design (1h runtime)

both. Instead of increasing the runtime, we next present another possibility to tweak the
optmization process using one of the advanced options.

7.2.1 Set minimum stage size

Considering the result of the cost minimization in figure 31, we see that the sample sizes
are almost equidistantly distributed over the different stages. While the optimal design
may deviate from that more or less, it is very unlikely that an optimal design contains a
very tiny stage just because the smaller a stage, the less information it will provide. In
practice, the benefit of a tiny stage also would often be rather small in relation to the
effort of conducting that stage. With this in mind, we set a minimum stage size of 5 000
individuals (see figure 48) for our optimization problem, which is 37.5% of 13 333, the size
if the total sample would be divided equidistantly over the three stages. This will limit
the range of possible parameters and therefore should enhance the optimization process.
Figure 49 displays the result obtained after another one hour of running time. This time
with cost of 4.804 ·106 not only the budget constraint has been maintained accurately, but
also the power is even slightly greater than 80%. We therefore would conclude that the
3-stage design obtained by one hour of cost minimization (section 6.4) was not optimal.
This, of course, comes at no surprise since we already mentioned that 24 hours of cost
minimization resulted in a budget of only 4.65 · 106. Thus one hour in general is too short
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Figure 48: Enter minimum stage size to tweak optimization.

Figure 49: Optimization result using a minimum stage size of 5000 (1h runtime)
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to get stable results, but if we pretend for a moment that we did not have this information,
in a next step one could go back and increase the runtime or use the same minimum stage
size constraint and then re-run the cost minimization again. Another possibility would be
to instead lower the budget constraint, say to 4.5 ·106, and restart the power optimization.
We leave it to the user to try this out and develop his or her own workflow based on the
presented use cases.

On a final note, as opposed to the presented use-cases, which all were started with a
runtime limit, in practice is is often more convenient to start the search process without
such a limit and instead use the ’Stop’-Button as soon as the user wants to abort the
optimization.

Part II

Flexible Two-stage Designs
(CRP-Tool)

The CRP-Tool module enables the construction of flexible two-stage design for GWAS
based on the conditional rejection principle (Müller and Schäfer, 2004). Again, an initially
large number of markers is examined in a subsample of all available subjects, and the most
promising markers shall be genotyped on the rest, combining both samples at the end in
a joint analysis. When deriving optimized multi-stage designs created with the OMD
module (section I), the decision which markers are promising and thus carried forward
to the next stage is solely based on the p-value of each interim analysis, that is, at each
stage only those markers with the smallest p-values survive. In addition, both the size
of each stage and the corresponding p-value thresholds will be fixed in advance prior to
the start of the study. In contrast, the flexible design approach as provided by the CRP-
Tool not only allows the first interim analysis (stage one) to be conducted at any given
time during the course of the project but also the selection of markers to be based upon
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arbitrary attributes, particularly, not only based on the first stage’s statistical outcome
(e.g., p-value) alone but also upon biological (e.g. candidate gene regions) or any other
criteria. Even new markers, which were not yet part of the study, can be included into the
study after stage one in this context. Last but not least, the researcher has the option to
adjust the sample size based on the first stage outcome, thereby being able to respond to
outcomes not being anticipated when planning the sample size at the start of the study.
Using the CRP-Tool, the family-wise error rate (fwer) is controlled in the strong sense
for any selection and/or modifications being applied. Furthermore, a loss of efficiency is
avoided by redistributing conditional type I error rates of all discarded markers among
the markers being carried forward. Last but not least, this approach can be combined
with initially optimized designs, that is, one starts with an optimized design using the
OMD module and may after the first interim analysis decide to modify the design using
the CRP-Tool module.

8 How to read the CRP-Tool manual

For most users it is recommended to read the manual from start to end. Section 10
provides a basic introduction to the method. For a comprehensive description we refer to
Scherag et al. (2009). Section 11 explains the standard program parameters and options
one by one with some extented descriptions where necessary. For a very quick start, you
can jump to the last section 12, which provides some basic examples accompanied by
further details about both the output of the CRP-Tool and flexible designs constructed
this way in general.

9 Features overview

• Flexible marker selection

– Arbitrary selection of markers from/after stage 1, for example, using (in any
combination)

∗ p-value threshold

∗ biological relevance

∗ markers reported elsewhere in the literature

– Inclusion of new markers for stage 2, which were not part of stage 1

– One-/two-sided testing and test direction both customizable individually for
each marker

• Sample size modification based on stage 1 result

• Automatic choice of promising test direction for one-side tested markers
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• Control of the family-wise error rate (fwer) in the strong sense, independent of the
marker selection process or any other modification after stage 1

• Support of PLINK analysis format

10 Method overview

10.1 Motivation

First and foremost, the motivation behind using flexible 2-stage designs is similar to that
of general multi-stage designs discussed earlier (section 3.2), namely saving genotyping
cost by cutting down the marker set in a stage-by-stage analysis. In contrast to optimized
multi-stage designs mainly targeting efficiency, the flexible design approach is emphasizing
flexibility as well, of course, at the cost of dropping some efficiency in the process.

10.2 The flexible design framework in genomic studies

Using the CRP-Tool, the association study (GWAS) is conducted in two stages. First,
the overall sample size of the study is fixed and a number of n1 individuals (cases +
controls) is genotyped on the initial (”full”) marker set M1 = M at stage 1 (figure 50).
Based on the interim results such as the p-values obtained from testing for association
on the n1 individuals or any other information observed so far, respectively, any subset
of markers M∗ ⊂ M1 can be selected to be continued at stage 2. A set of new marker
loci M+ \M1 not being part of the initial marker set may now be included into stage 2
as well. This, however, requires to have had reserved a number of placeholders, so-called
wildcard tests (section 11.2.4), before inspection of the first stage data. Othwerwise, that
is, if the number of wildcard tests are chosen using the information gained from stage 1,
type I error inflation is likely to occur. Similarly you will not be allowed to use genotype
information of the stage 1 sample for the final statistical test (after stage 2) of the new
markers being just included this way. At stage 2, then another sample of n2 individuals is
genotyped on all selected markers M2 = M∗ +M+. The samples of both stages must be
disjoint while their case-control ratios should be identical13. The final p-values at stage 2
are calculated from the pooled sample of both stages.

11 Parameter and options

This section explains the standard program parameters and options one by one with some
extented descriptions where necessary. A short description of each parameter can be

13The statistical model underlying the CRP-Tool is assuming identical ratios in both stages - the more
this assumption is violated, the worse the fit of this model, which in most cases results in a loss of
efficiency.
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Figure 50: Standard single stage design vs. flexible 2-stage design

always obtained by using the GUI’s tooltips, which are accessed by moving the mouse
cursor over the corresponding field. Starting the CRP-tool initially shows the window as
depicted in figure 51.

11.1 Input/Output

On a general note there are a total of five mandatory parameters without default val-
ues, which therefore must be always set by the user. Two of them are located in the
’Input/Output’ tab, namely both input files (’Stage 1’ and ’Stage 2’, see figure 51). The
rest of them are located in the ’Testing and sample size’ tab and initially marked with
a red error-symbol in the corresponding entry field (figure 52). The input data files will
contain the analyzed marker data including allele frequencies and p-values observed after
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Figure 51: The Input/Output tab at program start

stage 1 and stage 2, respectively. If the stage 2 analysis is not yet available, still interim
results can be calculated for the (sub)set of markers that was chosen to be continued at
stage 2 (for an example see section 12.1). For this, the stage 1 data of all these markers
can be re-used with the stage 2 input by simply removing all markers from the file, that
are not continued and optionally adding any new markers at the end of the list (for more
details see section 11.1.3). By combining both data files, the CRP-Tool can determine au-
tomatically, which markers were discarded and which have been (or will be) added newly
after stage 1, respectively, and also whether the second input file contains ”real” stage 2
data or just a repeated subset of stage 1. If stage 2 data is provided, the CRP-Tool, in
addition to the interim analysis, which is always part of the result output (section 12.2.1),
will also provide a list with the final test decision for each marker (section 12.3).

11.1.1 Stage 1 data

This file contains the analysis of the initial (”full”) marker set M1 = M (see also figure 50)
with one line per SNP locus including allele frequencies and unadjusted14 The p-values
can be calculated using either the Cochrane Armitage trend (Sasieni, 1997) or the allelic

14By ”unadjusted” we mean that the p-values have not been adjusted with regard to the multiple
testing issue of treating M markers at the same time, for example, by applying a Bonferroni correction
or the like.
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test statistic, respectively. In particular, the file must provide the following columns (in
any order):

• SNP: name of the marker locus

• A1, A2: names of the alleles at the marker locus, A1 may be both the major or the
minor allele

• F A, F U: frequency of allele A1 in the cases (A=affected) and in the controls
(U=unaffected), respectively, in the stage 1 subsample

• P: the p-value corresponding to CHISQ

• CHISQ: (optional) the 1 degrees of freedom χ2 statistics for association at the marker
locus specified in column SNP, calculated from the stage 1 subsample

At this point, the column naming convention was chosen to follow the PLINK (Purcell
et al., 2007) output format of a ”Basic case/control association test”. PLINK is producing
*.assoc files in this context which may contain some more columns not needed by the CRP-
Tool (e.g. BP, OR, L95, etc.). These files can still be readily used as input files, in which
case all redundant columns are simply ignored. Listing 6 displays an example file, which

s1.dat

SNP A1 F_A F_U A2 CHISQ P

rs1 G 0.100 0.085 C 1.38418948 0.2393888135

rs2 A 0.116 0.166 T 10.33160313 0.0013077157

rs3 G 0.370 0.290 C 14.81481481 0.0001186001

rs3b G 0.290 0.370 C 14.81481481 0.0001186001

rs4 T 0.183 0.177 A 0.11525016 0.7342442935

rs5 C 0.146 0.144 G 0.01653603 0.8976800982

rs6 A 0.515 0.482 T 2.17842697 0.1399574455

rs7 T 0.047 0.039 A 0.73954241 0.3898075005

rs8 G 0.234 0.222 C 0.41152263 0.5211976866

rs9 A 0.289 0.307 T 0.74920224 0.3867289244

rs10 C 0.328 0.274 G 6.99817606 0.0081592810

Listing 6: Example stage 1 data

can be found in the folder extdata/crp located in the installation folder of GroupSeq++.
You can get the full path to the file by loading GroupSeq++ and then typing the following
into the R-console:

file.path(path.package("GroupSeqPP"),"extdata/crp/s1.dat")
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Note that the column headers must be exactly as indicated. For example, the following
header will produce error messages:

bad.dat

snap B1 FA FU B2 CHI PVAL

rs1 G 0.1190 0.0890 C 9.899029895 1.653659e-03

11.1.2 Stage 2 data

For this you select the file containing the data analysis after stage 2. The format is
identical to the format of the stage 1 file before: The stage 2 file usually at least contains

s2.dat

SNP A1 F_A F_U A2 CHISQ P

rs2 A 0.1120 0.1595 T 19.489788646 1.011389e-05

rs3 G 0.3760 0.2950 C 30.290998573 3.718476e-08

rs3b G 0.2950 0.3760 C 30.290998573 3.718476e-08

rs4 T 0.2040 0.1970 A 0.297736594 5.853049e-01

rs5 C 0.1525 0.1590 G 0.329530409 5.659357e-01

rs6 A 0.4960 0.4945 T 0.008956873 9.246002e-01

rs10 C 0.3090 0.2975 G 0.635015143 4.255217e-01

rs100 G 0.4360 0.3080 C 37.744194619 8.065639e-10

rs101 T 0.0980 0.1010 A 0.050170021 8.227677e-01

Listing 7: Example stage 2 data

a selected subset M∗ ⊂M1. All other markers (i.e., M1 \M∗) were discarded after stage 1
and therefore cannot be part of the list in the stage 2 file. In addition, a set of new markers
M+ may have been added after stage 1 (e.g., rs100 and rs101 in listing 7). Thus, in total
M2 = M∗+M+ comprises all markers that have been genotyped at the second stage (see
also figure 50). For each marker m ∈ M∗ thereby being genotyped in both stages the
columns A1, F A, F U, A2, CHISQ, and P must refer to the data pooled together from
stage 1 and stage 2. For example, for each marker m ∈ M∗, column F A contains the
allele frequency of cases as observed in the pooled data of both stages. In contrast, for
each marker m ∈M+ added after stage 1 and thereby not being genotyped at stage 1 but
only at stage 2, the columns refer to stage 2 data only. On a side note, carrying forward
all markers from stage 1 also at stage 2 would lead to the maximal achievable study power
but, of course, at the same time result in the most ineffcient (i.e., most expensive) study
design.
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11.1.3 Using stage 1 data only (stage 2 data not yet available)

Since the choice of the subset of markers that shall be continued at stage 2 is (and must be)
solely based on the stage 1 data analysis, a first interim result can be calculated without
any stage 2 data being actually available. The most straight-forward way to specify the
desired subset is to copy the stage 1 data and then simply remove all markers from the
copied file, which are going to be discared after stage 1. In addition, new markers can be
added at any place in the file, which in the end will be set as the ”stage 2” input file. For
more details, please see the example in section 12.1.

11.1.4 Interpretation of the data

Basically there are three possible setups for a marker locus – each locus has been genotyped
either

1. in both stages, thereby carried over to stage 2

2. only in stage 1, thereyby discarded after stage 1

3. only in stage 2, thereby added after stage 1

No test for association will be performed for any marker that falls into the second case,
that is, if the marker is not included in the stage 2 file. These marker loci have been
stopped for futility and no evidence of marker disease association can be ever claimed
for those. By combining the data of both files, the program can determine the status of
each marker locus in the process. Table 2 shows this for the earlier presented example
data files. In the above example, the set of M∗ therefore consists of rs2, rs3, rs3b, rs4,

Table 2: Interpretation of example stage 1 and stage 2 data

s1.dat s2.dat M∗ M+ M2

rs1
rs2 rs2 X X
rs3 rs3 X X
rs3b rs3b X X
rs4 rs4 X X
rs5 rs5 X X
rs6 rs6 X X
rs7
rs8
rs9
rs10 rs10 X X

rs100 X X
rs101 X X
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rs5, rs6, and rs10. Two marker loci, rs100 and rs101, were included at stage 2 so that
M+ = {rs100, rs101}. Marker loci rs1, rs7, rs8, and rs9 were stopped after stage 1 and
thus will not be tested for association.

11.1.5 Single marker customization

In order to understand the following you should first read section 11.2.3, which describes
the testing of markers as done by default. This section describes how these default set-
tings can be overwritten on a marker-wise basis by including a corresponding line in the
customization file. For example, if the testing is globally set to one-sided, you may want
to include markers into the customization file to be tested two-sided, or vice versa. The
customization file format requires five columns:

• SNP: name of the marker locus

• A1, A2: names of the alleles at the marker locus, A1 may be both the major or the
minor allele

• s.A1: select allele A1 to be tested (=1) or not tested (=0)

• s.A2: select allele A2 to be tested (=1) or not tested (=0)

Consider the example file presented in listing 8. For SNP loci rs3b and rs101, the marker

custom.dat

SNP A1 A2 s.A1 s.A2

rs3b G C 1 0

rs4 T A 1 1

rs8 G C 1 1

rs101 T A 1 0

Listing 8: Example marker test customization

allele A1 is selected (column ’s.A1). This means that at these loci the null hypothesis of
no marker disease association will be tested against the one-sided alternative of an excess
of the allele A1 in cases only (see also the section about testing 11.2.3). For marker loci
rs4 and rs8, two-sided tests will be performed. If you set s.A1=0 and s.A2=0, no test will
be performed for the respective marker locus, which has the same effect as deleting the
marker locus from the stage 2 file.

11.1.6 Output

• Directory: the location where output files are placed

• This prefix is used to entitle the same prefix to all output files of a single run.
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11.2 Testing and sample size

This tab (figure 52) is used to set values regarding both the general design and statistical
setup. As said before, it contains three mandatory non-default parameters to enter from
the start, therefore marked by red error symbols initially.

Figure 52: The Testing and sample size tab at program start

11.2.1 Sample size

The sample sizes of both stages are entered here. Since the total sample size, n must have
been planned and specified at study start before genotyping the first individual, the stage
2 sample size n2 can be derived as soon as the stage 1 sample size n1 is known, namely
n2 = n − n1. To be exact, the sample size entered in field ’Stage 2’ only refers to the
number of samples used in that second stage and not to the total sample size n, which is
computed internally by adding the values entered in both fields (’Stage 1’ and ’Stage 2’).

11.2.2 Re-planning the sample size

After completion of stage 1 and prior to starting stage 2, relying on the CRP principle by
Müller and Schäfer (2004), the CRP-Tool allows adjusting the sample size for stage 2, and
with that the total sample size, based on the results of the interim result obtained from
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stage 1. For example, there might be evidence from the stage 1 analysis that the genetic
effects of the promising markers are smaller (greater) than anticipated before study start,
in which case one may wish to increase (decrease) the sample size in order to increase
the chance of observing a true effect (decrease the study cost) at the end. Re-planning
the sample size this way, as any modification of the design, preserves strong type I error
control but at the same time is associated with a loss of efficiency, that is, of the ratio of
power and sample size. Hence, using this option does not come at no cost, which makes it
important to still carefully specify the target genetic effect sizes prior to study start and
plan the sample size accordingly in order to avoid the need for sample size adjustment
after stage 1, thereby maintaining a high statistical efficiency in the process.

11.2.3 One-sided vs. Two-sided testing

One-sided

Using the default ’One-sided’ option, a finite upper critical limit c+ is calculated for each
marker m ∈M∗ = M2\M+ (see also figure 50), that is, for each marker being genotyped in
both stages, while the lower critical limit c− is always set to −∞. All calculation regarding
the critical limits is based solely on the stage 1 data, which is why they are presented
as part of the interim result output (for an example see 12.2.1). After stage 2, the final
test decision of each marker is then made by comparing their final test statistic to their
critical limits. The critical limit (−∞, c+) as produced by the ’One-sided’ option directly
implies a one-sided (one-directional) test in this case. As usual, the null hypothesis is
not rejected unless the test statistic falls outside the interval (−∞, c+) of the respective
marker.

For one-sided tests, the CRP-Tool will automatically determine the most promising test
direction after stage 1 and set the direction of test accordingly (see section 12.2.2). In
particular, if based on the stage 1 data the allele frequency of A1 is greater in the cases than
in the controls, the one-sided null-hypothesis H0 := frequency of A1 in cases ≤ frequency
of A1 in controls (or F_A ≤ F_U, see listing 6) will be tested against the alternative
hypothesis H1 := frequency of A1 in cases > frequency of A1 in controls (e.g., F_A >
F_U). If otherwise the allele frequency of A2 exceeds in cases over controls, A2 will be
tested instead.

The one group of markers not covered so far in this section, namely all markers belonging
to the set M+, that is, markers not being part of stage 1 but newly included after stage
1, will never get one-sided testing by default. Instead the CRP-Tool by default will
calculate both an upper and lower critical limit for those markers. Doing so takes account
for the fact that, since they were just added after stage 1, at this point, there is usually no
information available as to which allele is the most promising, in which case excluding one
side of the test makes no sense. Should the user want to overwrite this default setting for
a particular marker m ∈M+, for example, relying on some additional external biological
information, he or she can use the customization option to do so (see section 11.1.5).
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Two-sided

If the ’Two-sided’ option is selected, the program calculates upper and a lower critical
limits for each marker m ∈ M2, implying a two-sided test for all markers being geno-
typed at stage 2. Again, this setup can be customized on a marker-wise basis using the
customization option (section 11.1.5).

On a general note, the advantage of one-sided tests is the possibility of avoiding unneces-
sary alpha spending, thereby gaining power for the remaining tests. Unfortunately, this
gain will tend to be lower for marker loci which show marked differences of the allele fre-
quencies between cases and controls on stage 1 than for marker loci where the difference
between cases and controls is smaller. On the contrary, suppose that for some marker
with alleles C and T you observe an excess of, say, the allele C in the stage 1 sample. As
a consequence, you select one-sided testing for this marker. Should the situation reverse,
however, that is, after stage 2 in the pooled stage 1 and stage 2 sample, the C allele
now turns out to be significantly more frequent in controls than in cases, one will not be
allowed to claim marker disease association at this locus since the possibility to test for
this ”direction” was excluded irreversibly earlier by setting the one-sided test.

11.2.4 Number of wildcard tests

One important feature of the CRP-Tool is that the researcher is allowed to include addi-
tional markers into the study based on the results of stage 1, that is, after the stage 1 data
has been observed. However, there is one condition in this context: the maximal number
of markers that are going to be (possibly) added must be reserved beforehand, at least
before the stage 1 results are known. To be exact, the researcher must reserve the number
of one-sided tests15 for association he or she may possibly add. These reserved tests are
called wildcard (or placeholder) tests. At stage 2, there can be (but must not) added as
many additional tests as wildcards have been reserved ”earlier” and you will usually need
two wildcards for each new marker in order to perform a two-sided test, or put another
way, you will usually need to reserve two (one-sided) tests per ”wildcard-marker”. For
example, in Table 2, two markers (rs100 and rs101) have been added after stage 1. In
order to be able to include both markers for testing, at least 2 ·2 = 4 wildcard tests should
have been reserved beforehand. As an exception, if the test direction of interest is known
to you before starting stage 2 genotyping, meaning that you a priori exclude an excess of
one of the alleles in cases, you will need only one wildcard for this particular locus. In this
case, you will have to explicitly mark this exception by adding a line to the customization
file (see also 11.1.5).

It is important to note that statistically some ”alpha is spended” for each wildcard test
being reserved. As such, any wildcard not being used at stage 2 is simply dropped from
the final analysis but still has ”consumed some alpha”. Thus, each reserved wildcard that

15A one-sided test corresponds to a test for excess of a pre-specified marker allele at a certain locus,
that is, there are two directional alternatives with either an excess of the allele A1 in cases or an excess
of the allele A2 in cases, respectively (see also section 11.2.3).
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is not going to be used, leads to a slight loss of power so the number of wildcard tests
should be chosen with some care.

To summarize, including tests after stage 1 means that the respective marker locus was
not included in the stage 1 file, i.e., that it was not intended to perform an association test
at this locus in the initial study design. If you decide to genotype this marker locus in the
stage 2 individuals, you will perform an association test for this marker locus based on
the stage 2 data only. Moreover, while you are allowed to select the markers depending on
the results of stage 1, you are not allowed to include genotypic information obtained from
the stage 1 sample at any of these newly included markers in the final p-values, which is
why, in contrast to markers being part of the study from the start, only the data at stage
2 will be considered for computing the p-values of markers added after stage 1.

11.2.5 Family-wise error rate (FWER)

A value between 0 and 1 (typically 0.05) defining the desired probability of erroneously
claiming a marker disease association (type I error) for at least one of the markers out of
all markers investigated in the study. The CRP-Tool will provide control of the FWER
in the strong sense by initially applying the Bonferroni method to adjust for (the option
of) testing all markers included in the initial marker set M1 plus the number of wildcard
test reserved a-priori. The CRP method then basically is re-adjusting the marker-wise
Bonferroni levels depending on how many markers are continued after stage 1. The
resulting marker-wise significance levels will be greater than the initial Bonferroni levels
but smaller, of course, than if the Bonferroni levels were just derived for the set of marker
M2 at stage 2 in isolation, pretending stage 1 did never happen. As such, the CRP-Tool
will not eliminate the conservatism immanent due to the intial Bonferroni adjustment.

Finally, it is important to note that, as usual, controlling the type I error cannot be ensured
by statistical methods such as the CRP-Tool alone but also depends on an appropriate
(prospective) study design and study procedure from the start. In this particular case,
most importantly including

• announcement of the stage 1 and the planned stage 2 sample size prior to starting
stage 1 genotyping

• announcement of the initial marker panel prior to starting stage 1 genotyping

• full inclusion of this initial marker panel in the stage 1 analysis file

• announcement of the maximal number of new markers to be possibly added at stage
2 prior to starting stage 1 genotyping, and the correct communication of this number
to the program via the entry box ’Number of wildcard tests’

• selection of all continued markers (stage 2 file) prior to starting stage 2 genotyping

More aspects in this regard are discussed in Scherag et al. (2009).
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12 Example

In what follows, we will use the data files placed in folder extdata/crp, which in turn is
located in the installation folder of the GroupSeq++ package. We assume to have initially
planned a study with a sample size of 1,000 subjects per stage (totalling 2,000) and that
we have reserved six wildcard tests for potential inclusion of new markers after stage 1.
The file s1.dat (see listing 6) constitutes our stage 1 data and based on this, we select
some markers for stage 2.

12.1 Markers selection

First, we sort the markers at stage 1 according to their p-values (Table 3). We decide

Table 3: Example stage 1 data sorted by p-values

SNP P

rs3 0.0001186001
rs3b 0.0001186001
rs2 0.0013077157
rs10 0.0081592810
rs6 0.1399574455
rs1 0.2393888135
rs9 0.3867289244
rs7 0.3898075005
rs8 0.5211976866
rs4 0.7342442935
rs5 0.8976800982

to carry forward any marker to stage 2 with a p-value < 0.2. Using external biological
information, we furthermore decide to additionally carry over rs4 and rs5 regardless of
their p-value thus far. That is, the SNPs rs1, rs7, rs8, and rs9 are stopped after stage 1
and thus will neither be genotyped at stage 2 nor considered for final analysis after stage 2.
We simply eliminate the corresponding lines from listing 6, this way obtaining a reduced
set of markers as depicted in listing 9. Finally, we decide to add two new markers at stage
2, rs100 and rs101, which will consume four of the six wildcard tests we had reserved
initially16. We correspondingly add two new lines to our existing selection (listing 10).
Note that we must specify the allele names, but since we have not observed any data yet
for rs100 and rs101, all other values remain undefined, thereby being set to ”NA”.

16It is important to remember that the number of wildcard tests must be specified prior to inspection
of the interim result, or in other words, it must not depend on the observed data.
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s1-select.dat

SNP A1 F_A F_U A2 CHISQ P

rs2 A 0.116 0.166 T 10.33160313 0.0013077157

rs3 G 0.370 0.290 C 14.81481481 0.0001186001

rs3b G 0.290 0.370 C 14.81481481 0.0001186001

rs4 T 0.183 0.177 A 0.11525016 0.7342442935

rs5 C 0.146 0.144 G 0.01653603 0.8976800982

rs6 A 0.515 0.482 T 2.17842697 0.1399574455

rs10 C 0.328 0.274 G 6.99817606 0.0081592810

Listing 9: Stage 1 data after removing all non-carried forward markers

s1-select-add.dat

SNP A1 F_A F_U A2 CHISQ P

rs2 A 0.116 0.166 T 10.33160313 0.0013077157

rs3 G 0.370 0.290 C 14.81481481 0.0001186001

rs3b G 0.290 0.370 C 14.81481481 0.0001186001

rs4 T 0.183 0.177 A 0.11525016 0.7342442935

rs5 C 0.146 0.144 G 0.01653603 0.8976800982

rs6 A 0.515 0.482 T 2.17842697 0.1399574455

rs10 C 0.328 0.274 G 6.99817606 0.0081592810

rs100 G NA NA C NA NA

rs101 T NA NA A NA NA

Listing 10: Adding two new markers to the existing data selection

12.2 First run

We start the CRP-Tool and select the data files s1.dat and s1-select-add.dat (figure 53a).
In the ’Testing and sample size’ tab, we set the number of wildcard tests and the sam-
ple size accordingly (figure 53b). Starting the computation using the ’Start’ button, the
status output as shown in listing 11 should appear in the R-console. Initially some infor-
mation about the data input is given and how the found data has been interpreted (see
also section 11.1.4), followed by further status output and a bar showing the progress of
computation of the critical limits17. According to the output, the stage 1 (or interim)
result has been written into the file out.interim.csv, which we will inspect next.

17If a reasonably large marker set is analyzed, the process of computing the critical limits will take
much longer and consume the major part of the total runtime.
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(a) Input parameter (b) Study parameter

Figure 53: First run parameter setup

12.2.1 Interim result output

The *.csv-format is best viewed with standard spreadsheet software such as LibreOffice
Calc or Microsoft Excel. Alternatively, it can be read into R data frames using the
read.csv-function in R:

> df = read.csv("out.interim.csv")

> print(df)

which in our case prints a table as depicted in listing 12. The first six columns are just
taken over from the stage 1 input data file, however, filtered for the set of markers M2

that were selected to be continued at stage 2, that is, only for those markers that were
listed in the second input file. As a result, all other markers have been dropped from the
list. Moreover, the remaining markers are now sorted by their p-values (column ’P’) and
the column names have changed in parts, denoting the following:

• SNP: name of the marker locus

• A1, A2: names of the alleles at the marker locus, A1 may be both the major or the
minor allele

• fCa, fCo: frequency of allele A1 in the cases (fCa) and in the controls (fCo), respec-
tively.
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...reading /home/pahl/s1.dat - found 11 markers (stage 1)...

...reading /home/pahl/s1-select-add.dat - found 9 markers (stage 2)...

...at stage 2 there are:

...7 markers continued from stage 1 and...

...2 markers added newly at stage 2...

...marking alleles to be tested - done.

...preparing interim data - done.

...preparing allele tests - done.

...Computing critical limits...

...Started at Mon Mar 4 12:20:26 2013

0% 10 20 30 40 50 60 70 80 90 100%

|----|----|----|----|----|----|----|----|----|----|

***************************************************

...Finished at Mon Mar 4 12:20:26 2013

...User runtime: 0 s

...writing results...

...interim result was written to ’/home/pahl/out.interim.csv’

Listing 11: Status output of CRP-Tool into R-console

out.interim.csv

SNP A1 fCa fCo A2 P A.pivot z crit. crit..1

1 rs3 G 0.370 0.290 C 0.0001186001 G 3.849000 -Inf 2.90984

2 rs3b G 0.290 0.370 C 0.0001186001 C 3.849000 -Inf 2.90984

3 rs2 A 0.116 0.166 T 0.0013077157 T 3.214280 -Inf 2.90984

4 rs10 C 0.328 0.274 G 0.0081592810 C 2.645410 -Inf 2.90984

5 rs6 A 0.515 0.482 T 0.1399574455 A 1.475950 -Inf 2.90984

6 rs4 T 0.183 0.177 A 0.7342442935 T 0.339485 -Inf 2.90984

7 rs5 C 0.146 0.144 G 0.8976800982 C 0.128593 -Inf 2.90984

8 rs100 G NA NA C NA G 0.000000 -2.90984 2.90984

9 rs101 T NA NA A NA T 0.000000 -2.90984 2.90984

Listing 12: Interim result of example calculation (out.interim.csv).

• P: The p-value of the test of association

On the other hand, there are four new columns, which are explained in the following
sections.
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12.2.2 Pivot allele and z-score

The pivot allele (column ’A.pivot’) is one of A1 or A2 and defines the sign of the z-score
(column ’z’), whereas the absolute value of the z-score is

√
CHISQ, the square root of

the 1 df χ2 statistic for association. Once the pivot allele has been set, the z-score must
be always calculated relative to this allele. More precisely, if the allele frequency of the
pivot allele is greater in cases than in controls (fCa > fCo), the z-score must be positive,
otherwise (fCa < fCo) negative. Consider SNP rs3 at the top of listing 12. Since A1=G
is set as its pivot allele and fCa = 0.37 > 0.29 = fCo, the z-score (3.849) is positive. If the
second ranked SNP rs3b had also set A1 as its pivot allele, its z-score would amount to
−3.849, because in this case fCa = 0.29 < 0.37 = fCo. However, using A2=C as its pivot
allele, we see that the frequency relation gets reversed ( 1− 0.29 > 1− 0.37) so that the
z-score is positive again. The actual choice of the pivot allele in general is arbitrary but
for one-sided tested markers the CRP-Tool automatically chooses the pivot allele such
that the z-score is positive at the interim analysis. In case of two-sided testing, simply
A1 is set to be the pivot allele. Note that in both cases the choice of the pivot allele
solely is based on the allele frequency observed in the stage 1 data. Using the pivot allele
for the calculation of the z-score then ensures that the direction of testing is maintained
throughout both stages. For example, consider SNP rs3 in listing 12 again. If the pooled
data of stage 1 and stage 2 resulted in fCa = 0.1 < 0.7 = fCo for allele A1=G, there would
be a significant difference regarding the frequency of A1 in cases versus controls, but the
z-score would have turned to be negative by then, which in case of one-sided testing would
not lead to rejecting the null hypthesis (see also section 12.2.3).

12.2.3 The critical limits crit- and crit+

The critical limits refer to standard normal z-score test statistics and first of all provide an
interim status of each marker after stage 1, that is, the more the z-score of the marker is
lying outside the interval given by the critical limits, the higher the chance of the marker
to be significant at the end, and vice versa. For example, the top marker in listing 12,
SNP rs3, has a z-score of 3.849, which is well above the upper critical limit (crit+18 =
2.9098) and thereby a promising candidate to obtain a final significant association after
stage 2. Second, the presented limits can (and will) also be used for the test decisicion
in the final analysis of stage 2. For this, the final z-score, which then is calculated from
the pooled stage 1 and stage 2 data (or from stage 2 data only in case the marker was
added just after stage 1) will be compared against these critical limits, declaring significant
association if the z-score is (still) located outside them. In any case, you will not have to
compute the test decision on your own, because it will be delivered with the final output
(see section 12.3).

For one-sided tested markers, the critical limits together with the pivot allele (section 12.2.2)
determine the ”test direction”. In particular, the lower critical limit is always set to −∞

18Due to the R data frame column naming conventions, crit- and crit+ are displayed as crit. and crit..1
in the data frame output, respectively
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in the one-sided case, thereby aiming at a significant excess of the pivot allele frequency
among the cases after the final analysis. An example of critical limits is provided in list-
ing 12, where the critical limits of the top seven markers imply that one-sided testing is
applied to these SNPs. In contrast, a two-sided test will be applied to the last two markers
in the list, rs100 and rs101, recognizable by their symmetric critical limits, which is done
automatically for all markers just being added after stage 1 and for which therefore no
interim information is yet available (see also section 11.2.3).

The calculation of the crit-/crit+ values depends on the various study parameters such
as the number of markers, the sample size at stage 2, the number of wildcard tests, the
family-wise error rate, and so on. To see this, we decrease the number of wildcard tests
from 6 to 10 (figure 54) re-run the analysis, and obtain the interim output shown in

Figure 54: Set the number of wildcards to 10.

listing 13. Since the calculation relied on the same data set as before, only the critical
limits have changed compared to listing 12, increasing from 2.90984 to 2.94794. These
wider limits make sense as we have increased the number of wildcards and with that the
total number of tests as well. As a result, the new limits have to be ”more stringent” to
still control the total family-wise error rate, or in other words, with an increased number
of tests, the CRP-Tool must spend less alpha on average for each test.

12.2.4 Customizing markers

The default global, either one- or two-sided testing is a reasonable choice in most stan-
dard setups but sometimes external information might require additional customization
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out.interim.csv

SNP A1 fCa fCo A2 P A.pivot z crit. crit..1

1 rs3 G 0.370 0.290 C 0.0001186001 G 3.849000 -Inf 2.94794

2 rs3b G 0.290 0.370 C 0.0001186001 C 3.849000 -Inf 2.94794

3 rs2 A 0.116 0.166 T 0.0013077157 T 3.214280 -Inf 2.94794

4 rs10 C 0.328 0.274 G 0.0081592810 C 2.645410 -Inf 2.94794

5 rs6 A 0.515 0.482 T 0.1399574455 A 1.475950 -Inf 2.94794

6 rs4 T 0.183 0.177 A 0.7342442935 T 0.339485 -Inf 2.94794

7 rs5 C 0.146 0.144 G 0.8976800982 C 0.128593 -Inf 2.94794

8 rs100 G NA NA C NA G 0.000000 -2.94794 2.94794

9 rs101 T NA NA A NA T 0.000000 -2.94794 2.94794

Listing 13: Interim result output with number of wildcard tests increased to 10.

of individual tests in order to be more effective with regard to the spended alpha. As
an example, we will customize the way some markers are tested. For this, we ”load”
the file custom.dat (figure 55), which contains the customizations displayed in listing 14.

Figure 55: Load extra customization file.

Particularly, for marker rs3b, an excess of allele A1 (G) in cases shall be tested and allele
A2 (C) not. Since allele A1 has a lower frequency in cases (0.29) than allele A2 (0.37) at
stage 1, we force to test in the less promising direction this way (see also listing 12). For
rs4 and rs8 we set a two-sided test and for rs101 we omit testing allele A2. Re-running
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custom.dat

SNP A1 A2 s.A1 s.A2

rs3b G C 1 0

rs4 T A 1 1

rs8 G C 1 1

rs101 T A 1 0

Listing 14: Example marker test customization

the tool now, besides the standard information, should show up with a warning in the
R-console output:

Warning: Customized test file has 1 markers that won’t occur at Stage 2,

which are hence ignored.

Reviewing listing 10, marker rs8 indeed is not part of the list for stage 2 and consequently
ignored by the CRP-Tool in the process. The resulting interim output now appears
as displayed in listing 15. We immediately observe a change of the sign of the z-score of

out.interim.csv

X SNP A1 fCa fCo A2 P A.pivot z crit. crit..1

1 5 rs3 G 0.370 0.290 C 0.0001186001 G 3.849000 -Inf 2.93289

2 6 rs3b G 0.290 0.370 C 0.0001186001 G -3.849000 -Inf 2.93289

3 4 rs2 A 0.116 0.166 T 0.0013077157 T 3.214280 -Inf 2.93289

4 1 rs10 C 0.328 0.274 G 0.0081592810 C 2.645410 -Inf 2.93289

5 9 rs6 A 0.515 0.482 T 0.1399574455 A 1.475950 -Inf 2.93289

6 7 rs4 T 0.183 0.177 A 0.7342442935 T 0.339485 -2.93289 2.93289

7 8 rs5 C 0.146 0.144 G 0.8976800982 C 0.128593 -Inf 2.93289

8 2 rs100 G NA NA C NA G 0.000000 -2.93289 2.93289

9 3 rs101 T NA NA A NA T 0.000000 -Inf 2.93289

Listing 15: Interim result output after single marker customization.

marker rs3b to the negative and that the z-score is now lying well within the critical limits.
Thus, by choosing to test the unpromising direction as specified in the customization file,
the marker has become very unlikely to be significant at the end, because after the applied
customization it has to ”beat” the upper limit 2.93289 while this time ”starting at” -3.849
at the beginning of stage 2. For marker rs4 now two finite limits are defined reflecting
the testing of both directions, while the ”wildcard marker” rs101 now obviously is tested
only in one direction, as was also requested in the customization file. Probably the
most interesting observation, however, comes with the changed critical upper limit being
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relaxed from 2.94794 down to 2.93289, which for the most part in fact can be contributed
to switching the test direction of marker rs3b19. An intuitive explanation is that the
marker had a very high z-score under the null hypothesis before, which is not the case
anymore so that now ”less alpha has to be spent” for this marker, which in turn can be
distributed among the rest.

A similar albeit smaller effect can be observed when modifying the number of tests via
the One-sided/Two-sided option. To demonstrate this, we switch to two-sided testing
(figure 56) and once again restart the analysis, which delivers the results as displayed in

Figure 56: Set the number of wildcards to 10.

listing 16. Again only the critical limits have changed but only slightly so, increasing

out.interim.csv

1 rs3 G 0.370 0.290 C 0.0001186001 G 3.849000 -2.9329 2.9329

2 rs3b G 0.290 0.370 C 0.0001186001 G -3.849000 -Inf 2.9329

3 rs2 A 0.116 0.166 T 0.0013077157 A -3.214280 -2.9329 2.9329

4 rs10 C 0.328 0.274 G 0.0081592810 C 2.645410 -2.9329 2.9329

5 rs6 A 0.515 0.482 T 0.1399574455 A 1.475950 -2.9329 2.9329

6 rs4 T 0.183 0.177 A 0.7342442935 T 0.339485 -2.9329 2.9329

7 rs5 C 0.146 0.144 G 0.8976800982 C 0.128593 -2.9329 2.9329

8 rs100 G NA NA C NA G 0.000000 -2.9329 2.9329

9 rs101 T NA NA A NA T 0.000000 -Inf 2.9329

Listing 16: Interim result output using two-sided testing by default.

19 If you want investigate the influence of each customization in detail, try to modify the customization
file to only contain one of the specifications a time.
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barely from 2.93289 (listing 15) to 2.9329. Since each marker (except the customized
ones) is tested in both directions, alpha is now spended at both ends (or tails) of the
null distribution. Consequently, less alpha can be spended at each one side than in the
one-sided case, resulting in slightly more conservative limits.

12.2.5 Re-plan the sample size

Finally, we will investigate what happens if we re-plan the sample size. For this, we
increase the stage 2 sample size from 1 000 to 1 200 (figure 57) and again re-run, yielding

Figure 57: Modify sample size at stage 2.

a new interim output as shown in listing 17. In contrast to all results obtained earlier, using
the sample size modification, the critical limits have become individual to each marker
and are no longer symmetric. An exception to this are marker loci with an interim z-score
of z=0.0, which is always the case for markers added just after stage 1. As can be seen
in listing 17, the more the z-score is deviating from 0 at the interim result at stage 1, the
more asymmetric the critical limit turns out to be, namely in the direction that is most
promising according to the interim result, or in other words, more alpha is spended in
the promising test direction. As an example consider SNP rs5 with a z-score only slightly
greater than 0, which reflects the fact that the frequencies of the pivot allele C do not
differ by much in cases versus controls (fCa and fCo) at stage 1. As a result, the critical
limits are almost symmetric, slightly in favor of the pivot allele regarding the possibility
to declare a significant excess yet still at the end of stage 2. On the other hand consider
the top, most promising, SNP rs3, which is spending the most alpha out of all SNPs on
the upper (promising) and the least alpha on the lower critical limit, respectively.
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out.interim.csv

SNP A1 fCa fCo A2 P A.pivot z crit. crit..1

1 rs3 G 0.370 0.290 C 0.0001186001 G 3.849000 -3.31099 2.81563

2 rs3b G 0.290 0.370 C 0.0001186001 G -3.849000 -Inf 3.31099

3 rs2 A 0.116 0.166 T 0.0013077157 A -3.214280 -2.85647 3.27015

4 rs10 C 0.328 0.274 G 0.0081592810 C 2.645410 -3.23354 2.89308

5 rs6 A 0.515 0.482 T 0.1399574455 A 1.475950 -3.15829 2.96833

6 rs4 T 0.183 0.177 A 0.7342442935 T 0.339485 -3.08515 3.04146

7 rs5 C 0.146 0.144 G 0.8976800982 C 0.128593 -3.07158 3.05503

8 rs100 G NA NA C NA G 0.000000 -2.93290 2.93290

9 rs101 T NA NA A NA T 0.000000 -Inf 2.93290

Listing 17: Interim result output after using sample size re-plan option.

Should you want to use the asymmetrical critical limits for test decisions on your own, it
is crucial to determine the correct sign of the z-score test statistic at every single marker
locus (see section 12.2.2). Otherwise, the CRP-Tool is taking care for you already in this
regard and includes the correct test decision in the final output, which is explained in the
next section 12.3.

12.3 Stage 2 analysis and final test decision

For stage 2 we select the accompanying data file s2.dat (figure 58) and leave everything
else as is. Running the CRP-Tool once again, we notice one additional line at the end

Figure 58: Load stage 2 data.

of the status output in the R-console, stating that the final ouput has been written to a
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file out.final.csv. The content of this file is shown in listing 18. First and foremost, all

out.final.csv

SNP A1 fCa fCo A2 P crit. z crit..1 assoc

1 rs100 G 0.4360 0.3080 C 8.0656e-10 -2.9329 6.143600 2.9329 TRUE

2 rs3 G 0.3760 0.2950 C 3.7185e-08 -3.3110 5.503700 2.8156 TRUE

3 rs3b G 0.2950 0.3760 C 3.7185e-08 -Inf -5.503700 3.3110 FALSE

4 rs2 A 0.1120 0.1595 T 1.0114e-05 -2.8565 -4.414700 3.2702 TRUE

5 rs10 C 0.3090 0.2975 G 4.2552e-01 -3.2335 0.796880 2.8931 FALSE

6 rs5 C 0.1525 0.1590 G 5.6594e-01 -3.0716 -0.574050 3.0550 FALSE

7 rs4 T 0.2040 0.1970 A 5.8530e-01 -3.0852 0.545650 3.0415 FALSE

8 rs101 T 0.0980 0.1010 A 8.2277e-01 -Inf -0.223990 2.9329 FALSE

9 rs6 A 0.4960 0.4945 T 9.2460e-01 -3.1583 0.094641 2.9683 FALSE

Listing 18: Final result output of joint stage 1 and stage 2 analysis.

values (except those in columns denoted by ’crit’) now refer to the pooled data sample
of stage 1 and stage 2. Again, the list of markers is ordered by their p-values in column
’P’, which, however, can now be different compared to the interim output, because the
p-values may have changed with the stage 2 data, as is the case in our example. The
critical limits have been taken over from the interim result output (see listing 17) and
using the updated z-score (column ’z’), the test decision can now be derived directly by
determining whether the z-score is located within (yes significant association) or outside
(no significant association) the critical limits. The CRP-Tool provides this information in
the last column named ’assoc’, that is, whether (TRUE) or not (FALSE) the marker is
significantly associated with the trait.

In our example, rs2 and rs3, the two most promising markers according to the interim
result (listing 17), show a significant association after stage 2. The marker rs3b, for which
the test direction was switched via the customization file, has the same p-value as rs3
but ”unfortunately” was tested in the wrong direction so that the null hypothesis cannot
be rejected for this marker. The marker rs100, although added after stage 1 and thus
genotyped only at stage 2, has rised to the top of the list showing the smallest p-value of
the entire set in stage 2 and a significant association as well.
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Mathematical Details

A Module OMD

A.1 Statistical model

We want to compare the distributions of two random variables X and Y . We assume

Gaussian distributions for X and Y . In the example of genetic case-control association

studies, we take X = genotypic score value of a randomly selected control persons, and

Y = genotypic score value of a randomly selected case (diseased person).

In this general model let µX = E(X), µY = E(Y ), σX =
√
V ar(X), σY =

√
V ar(Y ), σX2 =√

V ar(X2) = σ2
X + µ2

X , σY 2 =
√
V ar(Y 2) = σ2

Y + µ2
Y , σX2,X = Cov(X,X2) = E(X3)−

µX(σ2
X + µ2

X), σY,Y 2 = Cov(Y, Y 2) denote the moments of the distribution of X and Y ,

respectively.

The null hypothesis is H0: µX = µY , σX = σY , σX2 = σY 2 , σX,X2 = σY,Y 2 . Different test

statistics to test H0 are possible. At the k-th interim analysis, k = 1, . . . , K, these test

statistics may be written as functions of the four sufficient statistics Rk =
∑mk

i=1Xi, Sk =∑lk
i=1 Yi, RQk =

∑mk

i=1X
2
i , SQk =

∑lk
i=1 Y

2
i , where mk and lk are the numbers of individ-

uals from the X and the Y sample, respectively, entering into the k-th interim analysis.

The test statistics for the k-th interim analysis has the form

Tk =
Uk√
Vk

where Uk = (mk + lk)(
Sk

lk
− Rk

mk
) and Vk is a variance estimator under H0. The variance of

Uk may be approximated by σ2
U,k = (mk + lk)

2 ·
(
σ2
X

mk
+

σ2
Y

lk

)
.
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To construct the estimator Vk, an estimator both for σ2
X and for σ2

Y is required. As a

first possibility, one may use the pooled variance s2
p both as an estimator for σ2

X and

for σ2
Y , where the pooled variance is given by s2

p =
mks

2
X+lks

2
Y

mk+lk
. This leads to Vk =(

(RQk −
R2

k

mk
) + (SQk −

S2
k

lk
)
)
/(mk + lk).

As a second possibility, the variance may be estimated from the controls only (controls

only variance estimation), which leads to Vk =
(
RQk −

R2
k

mk

)
/mk.

As a third possibility, one may use a so-called separate variance estimation. Hereby, the

usual variance estimators s2
X and s2

Y are substituted for σ2
X and σ2

Y , respectively, in the ex-

pression for σ2
U,k given above. This leads to Vk =

(
lk
mk

(
RQk −

R2
k

mk

)
+ mk

lk

(
SQk −

S2
k

lk

))
/(mk+

lk). The test statistics defined in this way corresponds to the test statistics ZCC2 of Zheng

und Gastwirth (2006) defined by the variance estimator σ̃2
1 of Zheng und Gastwirth.

Please note that the test statistics as standardised in the above way have variance V ar(Tk) =

(mk+lk)3

mk·lk
and expected value E(Tk) = 0 under H0.

A.2 Calculations of the parameters of the asymptotic distribu-

tions of the test statistics

The algorithm implemented in the program is based on a normal approximation of the

vector of the test statistics (T1, . . . , TK) as described in the following. The expected

value of the random vector Z = (Rj, Sj, Rk, Sk, RQj, SQj, RQk, SQk) for two timepoints

j < k can be approximated by E(Z) = (mjµX , ljµY ,mkµX , lkµY ,mj(σ
2
X + µ2

X), lj(σ
2
Y +

µ2
Y ),mk(σ

2
X + µ2

X), lk(σ
2
Y + µ2

Y )).
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The asymptotic covariance matrix of the random vector Z for two interim timepoints

j < k will be approximated by

Cov(Z) =



σ2
Xmj 0 0 0 σX,X2mj 0 0 0

0 σ2
Y lj 0 0 0 σY,Y 2lj 0 0

0 0 σ2
Xmk 0 0 0 σX,X2mk 0

0 0 0 σ2
Y lk 0 0 0 σY,Y 2lk

σX,X2mj 0 0 0 σ2
X2mj 0 0 0

0 σY,Y 2lj 0 0 0 σ2
Y 2lj 0 0

0 0 σX,X2mk 0 0 0 σ2
X2mk 0

0 0 0 σY,Y 2lk 0 0 0 σ2
Y 2lk



Based on this expression for Cov(Z), the covariance matrix of (Tj, Tk) will be calculated

by first order approximation in the following way.

Let B = ∂a,b,c,d
(
a/b
c/d

)
and B̄ = B|d→E(

√
Vk),b→E(

√
Vj),c→E(Uk),a→E(Uj)

. Here, for a column

vector function f = (f1(x1, . . . , xm), . . . , fn(x1, . . . , xm))′, ∂x1,...,xmf denotes the (m × n)-

Matrix of the first order derivatives, i.e., ∂x1,...,xmf = (∂xjfi)i=1,...,n; j=1,...,m. The notation

|d→ E(
√
Vk), . . . means that d has to be replaced by the exptected value of

√
Vk, and so

on.

Let

A = ∂Rj ,Sj ,Rk,Sk,RQj ,SQj ,RQk,SQk

 Uj√
Vj

Uk√
Vk


and let Ā = A|Rj→E(Rj),Sj→E(Sj),Rk→E(Rk),Sk→E(Sk),RQj→E(RQj),SQj→E(SQj),RQk→E(RQk),SQk→E(SQk).
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The covariance of Tj and Tk will be approximated by

Cov(Tj, Tk) = B · A · Cov(Z) · AT ·BT

The exptected value of Tk will be approximated by

E(Tk) = Tk
∣∣
Rk→mkµX ,Sk→lkµY ,RQk→mk(σ2

X+µ2X),SQk→lk(σ2
Y +µ2Y )

Let n be the planned overall sample size of the X and Y sample. The information time

relative to the planned overall sample size n at the k-th interim analysis is tk = lk+mk

n
.

The timepoint of the k-th analysis is tk, i.e., the k-th analysis will be performed on a total

number of n · tk observations of X and Y . Let rk denote the stagewise proportion of the Y

sample on stage k, i.e., rk = lk−lk−1

(lk+mk)−(lk−1+mk−1)
= lk−lk−1

(tk−tk−1)n
. In other words, rk·(tk−tk−1)·n

observations of Y are recruited between tk−1 and tk, and (1 − rk) · (tk − tk−1) · n units

of X are recruited between tk−1 and tk. Let ρk denote the cumulative proportion of the

Y sample (”cumulative r”) up to stage k. This can be calculated from the stagewise

ri, i = 1, . . . , k from the formula ρk =
∑k

i=1 ri·(ti−ti−1)

tk
.

A.3 Survivor probabilities of markers

Let [Ak, Bk], k = 1, . . . , K, be pre-defined group sequential boundaries. For given bound-

aries, let π(A1, B1, . . . , Ak, Bk) = P (Ti < Ai for all i = 1, . . . , k) + P (Ti > Bi for all i =

1, . . . , k) denote the probability that a single marker will survive stage k and thus will

still be genotyped on stage k + 1. This probability is calculated as the integral

∫ ∞
Bk

. . .

∫ ∞
B2

∫ ∞
B1

f(x1, . . . , xk)dx1, dx2 . . . dxk+

∫ Ak

−∞
. . .

∫ A2

−∞

∫ A1

−∞
f(x1, . . . , xk)dx1, dx2 . . . dxk
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by the program, where f denotes the multinormal distribution of the cumulative test

statistics (T1, . . . , Tk) on the single stages.

Example (K = 2): the density is integrated over the shaded area to calculate this survival

probability for a marker

This can be exptected to yield the best power, given the distributions under H0 and H1

indicated by concentric ellipses.

The nominal alphas α1, α2, . . . , αK returned by the program are two-sided stagewise nom-

inal alphas under the assumption of symmetric boundaries, Ai = −Bi. Thus, Bi =

Φ−1(1− αi/2).

For the user, this implies the following: On every stage a test statistic is calculated at

every marker locus and a two-sided nominal p-value is calculated based on the marginal

null distributions of the cumulative test statistics up to the given stage. Thus, one will use

for example a test statistic Ti, which locally follows a standard normal distribution under
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H0. Here, locally means that no previous discontinuation of the marker can happen. Now

let pi = 2 · (1−Φ(|ti|)). A marker can be carried forward to stage i+1 under the following

conditions:

(1) pi < αi

and

(2) the signs of the test statistics at the marker locus are equal on all previous stages,

which means that always the same marker allele is excessive in cases on all previous

stages, such that there is no change in the excessive marker allele in previous stages. See

the shaded area in the graphics above.

The numerical calculation of π(A1, B1, . . . , Ak, Bk) is done recursively by the following

method. Let f be the density of the univariate normal distribution with expective value

m and standard deviation s, i.e. f [x,m, s] := 1√
2π

1
s
e−

1
2

(x−m
s

)2 . The probability of marker

survival is then calculated as

π(A1, B1, A2, B2, . . . , Ak, Bk) =

∫ Ak

−∞
. . .

∫ A2

−∞

∫ A1

−∞

f

[
x = xk,m = µk +

σk−1,k

σ2
k−1

(xk−1 − µk−1), s =

√
σ2
k −

(σk−1,k)2

σ2
k−1

]
· . . . ·

f

[
x = x2,m = µ2 +

σ1,2

σ2
1

(x1 − µ1), s =

√
σ2

2 −
(σ1,2)2

σ2
1

]
· f
[
x1,m = µ1, s

√
σ2

1

]
dx1 dx2 . . . dxk

+

∫ ∞
Bk

. . .

∫ ∞
B2

. . .

∫ ∞
B1

. . . dx1 dx2 . . . dxk

Here, the parameters in the integrands, µk, σj,k and σ2
k, are calculated from the parameters

of the common multivariate distribution of the test statistics at the interim timepoints.

More precisely, one has µk = E(Tk), σ
2
k = V ar(Tk), σj,k = Cov(Tj, Tk) for timepoints j

and k with j > k. As shown before, µk, σ
2
k and σj,k can be expressed as functions of the
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parameters of the distribution for X and Y , µX , µY , σX , σY , σX2 , σY 2 , σX,X2 and σY,Y 2 ,

and of the interim sample sizes mj, lj,mk, lk. The resulting explicit expressions for µk, σ
2
k

and σj,k are given below for the example of the test statistics defined by the controls only

variance estimate. The interim sample sizes mj, lj,mk, lk have been expressed in terms

of the total sample size n and of the relative sample size proportions tj, tk, ρj and ρk.

The respective expressions for the other test statistics defined in A1.1. are very long and

cumbersome. For the controls only variance estimate, the expressions are as follows:

µk =
n tk(µX − µY )√

σ2
X

µm =
n tm(µX − µY )√

σ2
X

σ2
k =

1

4(1− ρk)ρkσ6
X

(n tk(4µ
4
Xρkσ

2
X − 4µ3

Xρk(2µY σ
2
X + σX,X2)

+µ2
Xρk(4µ

2
Y σ

2
X + 8σ4

X + σ2
X2 + 8µY σX,X2)

−2µXρk(µY (4σ4
X + σ2

X2) + 2µ2
Y σX,X2 + 2σ2

XσX,X2)

+4σ4
Xσ

2
Y + ρk(4σ

6
X + µ2

Y σ
2
X2 + 4µY σ

2
XσX,X2 − 4σ4

Xσ
2
Y )))

σj,k = − 1

4(−1 + ρk)ρkσ6
X

(n tj(4µ
4
Xρkσ

2
X − 4µ3

Xρk(2µY σ
2
X + σX,X2)

+µ2
Xρk(4µ

2
Y σ

2
X + 8σ4

X + σ2
X2 + 8µY σX,X2)

−2µXρk(µY (4σ4
X + σ2

X2) + 2µ2
Y σX,X2 + 2σ2

XσX,X2)

+4σ4
Xσ

2
Y + ρk(4σ

6
X + µ2

Y σ
2
X2 + 4µY σ

2
XσX,X2 − 4σ4

Xσ
2
Y )))
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A.4 Calculation of the group sequential boundaries Ak, Bk

The boundaries Ak, Bk have to be determined in such a way that π(A1, B1, A2, B2, . . . , ) =

α under H0. These boundaries Ak, Bk are valid for the test statistics Tk as defined above.

If one wants to use test statistics Zk standardised to standard normal distributions under

H0, the Ak, Bk have to be transformed as follows. The variance of Tk underH0 at timepoint

tk equals n·tk
ρk·(1−ρk)

, where ρk is a cumulative proportion of the Y sample until stage k (see

above). Hence, the critical boundaries for a standardised test statistics Zk is given by

ak = Ak ·

√
ρk(1− ρk)

n tk
,

with an analogous expression for bk. Conversely, if critical boundaries ak, bk for standard-

ised local test statistics Zk standardised to variance 1 and expectation 0 under H0 are

given and one wants to calculate the survival probabilities of the marker, under H0 or H1,

one has to use

Ak = ak

√
n tk

ρk(1− ρk)
and Bk = bk

√
n tk

ρk(1− ρk)
in the integral π(A1, B1, . . . , Ak, Bk)

defined above.

A.5 Spezification of the distribution parameters of X and Y in

the example of a genomewide case-control association study

In this section, we describe the application to genetic case-control studies. Here, X=

genotypic score value of a control person = w0G0 + w1G1 + w2G2 for (G0, G1, G2) ∼

Multinomial(1, (p0, p1, p2)), and Y = genotypic score value of person of the case group =

w0H0 +w1H1 +w2H2 for (H0, H1, H2) ∼ Multinomial(1, (q0, q1, q2)). Here, w0, w1 and w2

are score values for the three genotypes which have to be prespecified before starting the
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study. The parameters µX , µY , σX , σY are derived from the vectors w = (w0, w1, w2), p =

(p0, p1, p2) and q = (q0, q1, q2) as follows:

µX = p.w

µY = q.w

σX =
√

(w − p.w)2.p

σY =
√

(w − q.w)2.q

σX2 =
√

(w2 − p.w2)2.p

σY 2 =
√

(w2 − p.w2)2.q

σX,X2 = ((w2 − p.w2) ∗ (w − p.w)).p

σY,Y 2 = ((w2 − q.w2) ∗ (w − q.w)).q

In these expressions, a.b is the scalar product of vectors a and b, a.b = a1b1+a2b2+a3b3, a∗b

is the coordinate-wise multiplication, a∗ b = (a1b1, a2b2, a3b3), and a2 = a∗a. For a scalar

α, we denote by a+α the coordinate-wise operation, i.e., a+α = (a1 +α, a2 +α, a3 +α).

The conditional genotypic probabilities p0, p1, p2 for controls and q0, q1, q2 for cases may

be calculated from the odds ratios OR1, OR2 and the risk allele frequency a under the

rare disease assumption (which is one of the options in this program) by the following

formula:

p0 = (1− a)2, p1 = 2 · (1− a)a, p2 = a2
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and

q0 =
(1− a)2

1 + 2a(OR1 − 1) + a2(1− 2OR1 +OR2)
,

q1 =
2(1− a)aOR1

1 + 2a(OR1 − 1) + a2(1− 2OR1 +OR2)
,

q3 =
a2OR2

1 + 2a(OR1 − 1) + a2(1− 2OR1 +OR2)

A.6 Remarks on the test statistics implemented in OMD

General

The general form of the test statistics to be used is T = U/
√
V where U = (l+m)

(
S
l
− R

m

)
and V is an estimator for V ar(U).

”Pooled variance” estimator

The ”pooled variance” test statistics implemented in OMD implies estimation of the

variance separately in the case and the control group and then uses the usual pooled

variance estimator also used in the usual two-sample t-test statistics. The ”pooled vari-

ance” test statistics is Tpool = U/
√
Vpool. The variance of U can be approximated by

σ2
U = (m + l)2

(
σ2
X

m
+

σ2
Y

l

)
. The variance estimator Vpool is obtained from this expression

by replacing both σ2
X und σ2

Y by the following pooled variance estimator s2
p under H0:

s2
p =

m · s2
X + l · s2

Y

m+ l
=

(RQ− R2

m
) + (SQ− S2

l
)

m+ l

=
m ·
(∑m

i=1X
2
i

m
− X̄2

)
+ l ·

(∑l
i=1 Y

2
i

l
− Ȳ 2

)
m+ l

where s2
X and s2

Y are the usual variance estimators, andRQ =
∑m

i=1X
2
i , R =

∑m
i=1Xi, SQ =∑l

i=1 Y
2
i and S =

∑l
i=1 Yi. See ”Model and definitions” for the notations.
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Note that this test statistics is not considered by Zheng und Gastwirth (Zheng und Gast-

wirth, 2006).

We also emphasize that the sample sizes caclulated by OMD on the basis of the imple-

mented test statistics may strongly differ from the sample sizes as for example shown

by Schaid und Slager (Slager and Schaid, 2001). Schaid und Slager do not use the

pooled variance test statistics implemented in OMD. In their pooled variance test statis-

tics, they are using a variance estimator obtained from the pooled frequency tables.

I.e., the variance of a multinomial variable (
∑ncontrols

i=1 H0,i +
∑ncases

i=1 G0,i,
∑ncontrols

i=1 H1,i +∑ncases

i=1 G1,i,
∑ncontrols

i=1 H2,i+
∑ncases

i=1 G2,i) is used, where (G0,i, G1,i, G2,i) ∼Multinomial(1, (p0, p1, p2))

for i = 1, . . . , ncontrols and (H0,i, H1,i, H2,i) ∼Multinomial(1(q0, q1, q2)) for i = 1, . . . , ncases.

”Controls only” variance estimator

The controls only test statistic is given by Tcontrols = U/
√
Vcontrols, where Vcontrols is

obtained by replacing both σ2
X and σ2

Y by s2
X in the expression for σ2

U given in A1.6.2.

The ”separate” variance estimator (Zheng und Gastwirth, 2006)

The σ̃1 variance estimator of Zheng und Gastwirth (2006), denoted by VZG hereafter, is ob-

tained by substituting s2
X = RQ

m
−
(
R
m

)2
for σ2

X and s2
Y = SQ

l
−
(
S
l

)2
for σ2

Y in the variance ex-

pression σ2
U given in A1.6.2. The result is VZG = (m+l)2

ml

(
l
(
RQ
m
−
(
R
m

)2
)

+m
(
SQ
l
−
(
S
l

)2
))

which basically is a weighted sum of the variance estimates s2
X and s2

Y with weights pro-

portional to the sample sizes. In contrast, in Vpool, both s2
X and s2

Y have equal weights.

In contrast to Vpool, VZG will yield consistent variance estimates for U not only under H0

but also under H1.
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The variance estimator VZG defines a test statistics U/
√
VZG which was described as a

test statistic using a ”separate variance estimator” in section

Comparison of the variance estimators and resulting test statistics

One may argue that the Slager-Schaid variance estimator is ”positively biased” under

H1, in the sense of an overestimation of the true variance, with a bias proportional to

(µX − µY )2. Under H1, our pooled variance estimator Vpool seems to be negatively biased

in the sense of an underestimation of the true variance. See the one stage sample size

calculations in Table 1 done with this estimator which are smaller than the sample sizes

tabulated by Slager and Schaid (Slager and Schaid, 2001). However, our pooled variance

estimator will have a smaller variance under H0 than the variance of VZG. The estimator

VZG is asymptotically unbiased under H0 and H1.

To evaluate the performance of different test statistics as defined by different variance

estimators, we performed sample size calculations for a set of different effect sizes and

alpha and beta levels (Table 1). This was done with Mathematicar (Wolfram Research,

2005) (internal name of the notebook: ”sample size check single stage gwas.nb”,

abbreviated SSCNB hereafter). Power simulations were done with an private R script

called TestDeltaSigmaEinstufenPower.r and ALTSimulation Einstufen Power.r.
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Table 1: Sample sizes and power calculations for different association test statistics.

Tpool, pooled variance test statistics implemented in OMD; Tcontrols, controls only variance test

statistics implemented in OMD; TSlager, test statistics used by Slager and Schaid (Slager and

Schaid, 2001). The genotypic scores were w0 = 0, w1 = 1, w2 = 2.

Sample size of a fixed sample study calculated

on the basis of three different test statistics.

In brackets(): Monte Carlo simulated power***.

alpha beta r OR1 OR2 a Tpool** TSlager* Tcontrols

0.05 0.2 0.5 2 4 0.1 279.05 285.423 255.275

0.05 0.1 0.5 2 4 0.1 373.191 381.101 361.624

0.05 0.01 0.5 2 4 0.1 651.508 663.654 688.223

0.05 0.2 0.5 2 4 0.01 2339.74 2399.87 2077.93

0.05 0.2 0.5 2 4 0.9 483.03 (0.79938) 494.731 546.101 (0.7941)

0.05 0.2 0.2 1.2 1.44 0.2 4318.12 4322.38 4281.96

1e-7 0.2 0.5 1.2 1.44 0.2 13567 13597.1 13058.4

1e-7 0.2 0.5 1.2 1.44 0.1 23673 (0.79839) 23711.7 22454.1 (0.8012)

0.05 0.2 0.5 5 25 0.3 25.927 28.3561 26.4693

5e-8 0.2 0.5 5 25 0.3 122.47 (0.81701) 149.943 (0.93) 122.563 (0.82058)

5e-8 0.2 0.2 5 25 0.3 186.612 (0.8077) 214.032 (0.89286) 184.32 (0.79481)

5e-8 0.2 0.8 5 25 0.3 189.16 (0.79798) 216.541 198.06 (0.82367)

5e-8 0.2 0.5 5 25 0.8 345.526 (0.80118) 384.403 496.983 (0.79992)

5e-8 2e-7 0.5 5 25 0.3 391.847 379.446 408.158

5e-8 0.2 0.5 1.01 1.01*1.01 0.1 8.85302e6 8.85306e6 8.82724e6

5e-8 0.2 0.5 1.03 1.03*1.03 0.1 995400 995441 986816

5e-8 0.05 0.5 1.03 1.03*1.03 0.1 1.26572e6 1.26577 e6 1.25774 e6

5e-8 0.2 0.5 15 225 0.4 54.6118 (0.83105) 82.9325 75.0155 (0.82347)

* using PK=0.000000001 und GRR=OR

** under the ”rare disease assumption”

*** In the column headed ”TSlager”, the value indicated in brackets is the power achieved

with the test statistics Tpool under the indicated sample size calculated for TSlager. Power is

always defined as the probability to reject H0 and to identify the correct direction (i.e., the

allele which is overrepresented in the case population). The power values were calculated from

100000 multinomial replicates of genotype frequencies for cases and controls simulated as two
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independent multinomial variables (private R scripts TestDeltaSigmaEinstufenPower.r and

ALTSimulation Einstufen Power.r).

There are marked differences between the test statistics used by Slager and Schaid and our

Tpool statistics, especially for large genetic effect sizes (see the table entries for OR1 = 5

and OR2 = 25). For usual beta values, Slager and Schaid will yield larger sample sizes

than Tpool. Our simulation runs suggest that Tpool may actually yield higher power under

these scenarios. We also refer to the simulation runs presented in the chapter on program

tests hereafter. For very small values of beta, TSlager may produce smaller sample sizes.

B Module CRP

The mathematical details can be found in Scherag et al. (2009).

B.1 Assumptions for the application of the module CRP

The CRP module relies on certain assumptions on the association test statistics to be used

by the user when analysing the data. Let T 2
n denote the chi-square test statistics used

for association testing with an overall sample size of n, including rn cases and (1 − r)n

controls. The following assumptions are made:

(1) rlearning sample = rfull sample

(2) The same test statistic has to be used for all markers.

(3) Under H0 (no association), T 2
n has to follow a chi-square distribution with one degree

of freedom, T 2
n ∼ χ2

1, which implies Tn ∼ N(0, 1).
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(4) Sn :=
√
nTn has independent incremenents, i.e.

√
n2Tn2 −

√
n1Tn1 ∼ N(0, n2 − n1)

for n2 > n1

B.2 Calculation of the conditional rejection probability (CRP)

and the critial limits

Under these assumptions, the conditional rejection probability for a single marker may be

calculated as follows:

CRP = P(Tn2 > c|Tn1 = t) = P
(
Sn2√
n2

> c
∣∣∣ Sn1√
n1

= t

)
=

P (Sn2 − Sn1 > c
√
n2 − t

√
n1) = 1− Φ

(
c
√
n2 − t

√
n1√

n2 − n1

)

Now suppose that at the interim analysis the overall sample size is modified. Let n2 denote

the sample size as planned before starting the study, and let n∗2 denote the modified sample

size after data inspection. Then, the modified critial limit c∗ for Tn∗
2

can be calculated

from the critial limit c for Tn2 as follows:

c
√
n2 − t

√
n1√

n2 − n1

=
c∗
√
n∗2 − t

√
n1√

n∗2 − n1

, hence
√
n∗2c
∗ =

c
√
n2 − t

√
n1√

n2 − n1

·
√
n∗2 − n1 + t

√
n1

B.3 Admissible test statistics

The assumptions defined above will be fulfilled when the well-known Cochran-Armitage-

trend statistic is used. It will also be fulfilled when the allelic association test statistic

under Hardy-Weinberg-Equilibrium is used. For the allelic test statistic, this can be seen

as follows:

The allelic test statistics is based on the frequency table of the 2n alleles
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cases controls
∑

Allele t Kcases Kcontrols K

Allele T 2ncases −Kcases 2ncontrols −Kcontrols∑
2ncases 2ncontrols 2n

where ncases and ncontrols are the number of cases and controls. The allelic test statistics

then is defined as follows:

Tn :=
√
n
p̂cases − p̂controls√

p̂(1− p̂)
, where p̂cases =

Kcases

2ncases
, p̂controls =

Kcontrols

2ncontrols
, p̂ =

K

2n

As a distributional model we assume Kcases ∼ Binomial(2ncases, pcases) and Kcontrols ∼

Binomial(2ncontrols, pcontrols). Under these assumptions, Tn will approximatively follow

a standard normal distribution, Tn ∼ N(0, 1) for pcases = pcontrols =: p, and hence

√
nTn ∼ N(0, n) and T 2

n ∼ χ2
1.

One has

Tn ≈
√
n

(
Kcases

2ncases
− Kcontrols

2ncontrols√
p · (1− p)

)
=

Kcases

2r
√
n
− Kcontrols

2(1−r)
√
n√

p · (1− p)

and hence

√
nTn ≈

(1− r)Kcases − rKcontrols

2 · r · (1− r)
/
√
p(1− p)

which implies

(
√
n2Tn2)−(

√
n1Tn1) =

1

2r(1− r)
√
p(1− p)

·
(

(1− r)[K(2)
cases −K(1)

cases]− r[K
(2)
controls −K

(1)
controls]

)

This shows that
√
nTn has independent increments.
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Program tests

C Module OMD

The example designs listed in Table 2 were generated by the OMD module. Two validation

procedures were performed to check these designs:

a) A separate R script was written (called TestNumIntegUNDSimul.r hereafter) which

calculates the cumulative stagewise survival probabilities of a marker both under H0

(no marker disease association) and under the genetic effect size given by the values

of raf, or1, and or2 (H1) specified in Table 1 by numerical integration using the R

package mvtnorm of Hothorn, Bretz and Genz

b) In the same R script, a further procedure is implemented which calculates the final

survival probability after stage K, both under H0 and H1, i.e., the overall probability

to claim marker disease association at the end of the study for a single marker in the

initial marker panel.

For the numerical integration, the asymptotic normal approximation was used with the

same formulae for the normal distribution parameters as implemented in the OMD mod-

ule. Thus, these checks do neither imply a check of the correctness of the formulae for

the expectation and the covariance matrix used for normal approximation in OMD, nor

do they imply a check of the validity of the normal approximation itself. We therefore

also performed Monte Carlo simulations as described under b). In these simulation runs,

stagewise genotype frequencies cas[1], cas[2], . . . , cas[K] and con[1], con[2], . . . ,

con[K], of cases and controls, resp., were drawn from multinomial distributions using the

R function rmultinom. The stagewise test statistics as defined in ”Model and definitions”

were then calculated and the number of study replicates in which H0 was rejected was
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recorded to simulate the final survival probability. This implies a test of the validity of

the asymptotic normal approximation implemented in OMD.
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Results of the validation runs performed on the designs in Table 2 by the R

script TestNumIntegUNDSimul.r

În the following output listings, the values displayed under the heading ”cumulative

marker survival produced by OMD” are just a reproduction of the alphacum i and

powercum i values produced by OMD given in Table 1. "Cumulative marker survival

by numerical integration" is the cumulative stagewise survival probability of a marker

under H0 and H1 calculated by numerical integration using TestNumIntegUNDSimul.r.

These values should coincide with alphacum i and powercum i, respectively. "Overall

marker survival by Monte Carlo" is the final survival probability after stage K, both

under H0 and H1, calculated by Monte Carlo simulation and should coincide with the last

value below "cumulative marker survival produced by OMD" . SE gives the stan-

dard error of the Monte Carlo estimate.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Design 1

alpha 0.0574696 0.000129292

n 141 871

frac 0.5 test statistic pooled

effect size raf 0.1 OR1 2 OR2 4

cumulative marker survival produced by OMD

under H0 0.0574696 4.995e-05

under H1 0.5355 0.4996

cumulative marker survival by numerical integration

under H0 0.0574696 4.994994e-05

under H1 0.5355193 0.4996186

overall marker survival by Monte Carlo:

under H0 survival(SE) NA ( NA ) ( 50047608 iterations)

under H1 survival(SE) 0.5045466 ( 0.000499598 ) ( 1001527 iterations)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Design 2

alpha 0.219983 0.0469252 0.000166168

n 78 233 1011

frac 0.5 test statistic pooled

effect size raf 0.1 OR1 2 OR2 4

cumulative marker survival produced by OMD

under H0 0.219983 0.0264487 5e-05

under H1 0.6026 0.5121 0.5

cumulative marker survival by numerical integration

under H0 0.219983 0.02651546 5.004084e-05

under H1 0.6033623 0.512563 0.5004619

overall marker survival by Monte Carlo:

under H0 survival(SE) NA ( NA ) ( 49956692 iterations)

under H1 survival(SE) 0.5072213 ( 0.0005004099 ) ( 998154 iterations)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Design 3

alpha 0.0591824 0.0381663 0.00465853 0.00401383

n 250 417 750 1250

frac 0.2 test statistic controls

effect size raf 0.2 OR1 2 OR2 4

cumulative marker survival produced by OMD

under H0 0.0591824 0.0189244 0.00184662 5e-04

under H1 0.8196 0.8054 0.8 0.8

cumulative marker survival by numerical integration

under H0 0.0591824 0.01890796 0.001846751 0.0005005662

under H1 0.8196218 0.8054442 0.8001447 0.8000154

overall marker survival by Monte Carlo:

under H0 survival(SE) 0.000559112 ( 1.058029e-05 ) ( 4991844 iterations)

under H1 survival(SE) 0.8070015 ( 0.0007893416 ) ( 249976 iterations)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Design 4

alpha 0.0332112 8.75966e-05

n 5994 19864

frac 0.5 test statistic pooled
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effect size raf 0.1 OR1 1.2 OR2 1.4

cumulative marker survival produced by OMD

under H0 0.0332112 4.99965e-05

under H1 0.821 0.8

cumulative marker survival by numerical integration

under H0 0.0332112 4.999653e-05

under H1 0.821037 0.7999689

overall marker survival by Monte Carlo:

under H0 survival(SE) NA ( NA ) ( 50000975 iterations)

under H1 survival(SE) 0.7989634 ( 0.0008014722 ) ( 250049 iterations)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Design 5

alpha 0.238713 0.0568004 0.00185321

n 68 179 722

frac 0.2 test statistic pooled

effect size raf 0.2 OR1 2 OR2 4

cumulative marker survival produced by OMD

under H0 0.238713 0.0346678 0.0005

under H1 0.6205 0.5102 0.5

cumulative marker survival by numerical integration

under H0 0.238713 0.0346987 0.000500587

under H1 0.6208869 0.5105274 0.500301

overall marker survival by Monte Carlo:

under H0 survival(SE) 0.0005328913 ( 1.032957e-05 ) ( 4991637 iterations)

under H1 survival(SE) 0.4918177 ( 0.000500234 ) ( 998797 iterations)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Design 6

alpha 0.0845641 0.0012135

n 105 557

frac 0.2 test statistic pooled

effect size raf 0.2 OR1 2 OR2 4

cumulative marker survival produced by OMD

under H0 0.0845641 0.000498663

under H1 0.5492 0.4988
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cumulative marker survival by numerical integration

under H0 0.0845641 0.000498661

under H1 0.5492446 0.4988266

overall marker survival by Monte Carlo:

under H0 survival(SE) 0.0005547877 ( 1.051923e-05 ) ( 5010926 iterations)

under H1 survival(SE) 0.499894 ( 0.0004988279 ) ( 1004705 iterations)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Design 7

alpha 0.266091 0.128769 0.0445899 0.00179705

n 56 167 352 722

frac 0.2 test statistic pooled

effect size raf 0.2 OR1 2 OR2 4

cumulative marker survival produced by OMD

under H0 0.266091 0.0651709 0.0140726 5e-04

under H1 0.5993 0.525 0.5092 0.5

cumulative marker survival by numerical integration

under H0 0.266091 0.06537506 0.01413343 0.0005025314

under H1 0.6010025 0.5269794 0.5111534 0.5019259

overall marker survival by Monte Carlo:

under H0 survival(SE) 0.0005301355 ( 1.032284e-05 ) ( 4972314 iterations)

under H1 survival(SE) 0.4988482 ( 0.0005019283 ) ( 992326 iterations)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Design 8

alpha 0.245926 0.173333 0.116552 0.0595117 0.00169167

n 56 167 278 389 722

frac 0.2 test statistic pooled

effect size raf 0.2 OR1 2 OR2 4

cumulative marker survival produced by OMD

under H0 0.245926 0.0775237 0.0345078 0.0149409 5e-04

under H1 0.581 0.5265 0.5158 0.5102 0.5

cumulative marker survival by numerical integration

under H0 0.245926 0.0777637 0.03466551 0.01501257 0.0005025402

under H1 0.5827117 0.5284727 0.5177836 0.5120909 0.5017038

overall marker survival by Monte Carlo:
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under H0 survival(SE) 0.000557899 ( 1.058964e-05 ) ( 4972226 iterations)

under H1 survival(SE) 0.5008055 ( 0.000501706 ) ( 993208 iterations)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Design 9

alpha 0.247375 0.00128121

n 188 688

frac 0.5 test statistic pooled

effect size raf 0.1 OR1 2 OR2 4

cumulative marker survival produced by Seq++

under H0 0.247375 0.001

under H1 0.8745 0.8

cumulative marker survival by numerical integration

under H0 0.247375 0.0009995246

under H1 0.8741988 0.7995925

overall marker survival by Monte Carlo:

under H0 survival(SE) 0.001046549 ( 2.045485e-05 ) ( 2498689 iterations)

under H1 survival(SE) 0.8029341 ( 0.0007945534 ) ( 250637 iterations)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Design 10

alpha 0.499999 5.07722e-05 1.73548e-07

n 300 900 1500

frac 0.8 test statistic pooled

effect size raf 0.2 OR1 2 OR2 4

cumulative marker survival produced by OMD

under H0 0.499999 5.00212e-05 1e-07

under H1 0.9912 0.8314 0.8

cumulative marker survival by numerical integration

under H0 0.499999 5.002117e-05 9.999547e-08

under H1 0.9912488 0.8313949 0.7999975

overall marker survival by Monte Carlo:

under H0 survival(SE) NA ( NA ) ( 25001129188 iterations)

under H1 survival(SE) 0.7937513 ( 0.0008092158 ) ( 250004 iterations)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Design 11

alpha 0.00617293 2.61322e-06 1.16247e-07

n 20000 33333 37778

frac 0.2 test statistic pooled

effect size raf 0.1 OR1 1.2 OR2 1.4

cumulative marker survival produced by OMD

under H0 0.00617293 2.47816e-06 1e-07

under H1 0.9589 0.861 0.8

cumulative marker survival by numerical integration

under H0 0.00617293 2.478173e-06 9.99769e-08

under H1 0.9589173 0.8609938 0.7999287

overall marker survival by Monte Carlo:

under H0 survival(SE) NA ( NA ) ( 25005774225 iterations)

under H1 survival(SE) 0.7998009 ( 0.0008001209 ) ( 250111 iterations)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Design 12

alpha 0.833332 0.0106072 1.12514e-07

n 6667 15556 37778

frac 0.2 test statistic controls

effect size raf 0.1 OR1 1.2 OR2 1.4

cumulative marker survival produced by OMD

under H0 0.833332 0.0104417 1e-07

under H1 0.9926 0.9173 0.8

cumulative marker survival by numerical integration

under H0 0.833332 0.01044171 9.999835e-08

under H1 0.992619 0.9173005 0.800023

overall marker survival by Monte Carlo:

under H0 survival(SE) NA ( NA ) ( 25000409554 iterations)

under H1 survival(SE) 0.8009433 ( 0.000798639 ) ( 249964 iterations)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Design 13

alpha 0.000547363 1.71856e-07

n 12568 28148

frac 0.5 test statistic pooled
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effect size raf 0.1 OR1 1.2 OR2 1.4

cumulative marker survival produced by OMD

under H0 0.000547363 1e-07

under H1 0.831 0.8

cumulative marker survival by numerical integration

under H0 0.000547363 9.999991e-08

under H1 0.8309893 0.7999878

overall marker survival by Monte Carlo:

under H0 survival(SE) NA ( NA ) ( 25000019457 iterations)

under H1 survival(SE) 0.7999832 ( 0.0007999948 ) ( 250019 iterations)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Design 14

alpha 0.000547382 1.7356e-07

n 12544 28244

frac 0.5 test statistic pooled

effect size raf 0.1 OR1 1.2 OR2 1.4

cumulative marker survival produced by OMD

under H0 0.000547382 1e-07

under H1 0.8299 0.8

cumulative marker survival by numerical integration

under H0 0.000547382 9.999504e-08

under H1 0.8299258 0.7999804

overall marker survival by Monte Carlo:

under H0 survival(SE) NA ( NA ) ( 25001237267 iterations)

under H1 survival(SE) 0.798785 ( 0.0008017671 ) ( 250031 iterations)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Design 15

alpha 0.0107454 0.000172426 1.8332e-07

n 9136 15391 28377

frac 0.5 test statistic pooled

effect size raf 0.1 OR1 1.2 OR2 1.4

cumulative marker survival produced by OMD

under H0 0.0107454 0.000135671 1e-07

under H1 0.8875 0.8247 0.8
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cumulative marker survival by numerical integration

under H0 0.0107454 0.0001356736 1.00011e-07

under H1 0.8874793 0.8247097 0.8000295

overall marker survival by Monte Carlo:

under H0 survival(SE) NA ( NA ) ( 24997246868 iterations)

under H1 survival(SE) 0.7995551 ( 0.0008007402 ) ( 249954 iterations)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Design 16

alpha 0.5 0.0102882 6.64426e-05 2.17796e-07

n 6667 11111 15556 28889

frac 0.5 test statistic pooled

effect size raf 0.1 OR1 1.2 OR2 1.4

cumulative marker survival produced by OMD

under H0 0.5 0.0101934 6.38487e-05 1e-07

under H1 0.9945 0.9426 0.8158 0.8

cumulative marker survival by numerical integration

under H0 0.5 0.01019353 6.384831e-05 9.998744e-08

under H1 0.9945402 0.9425897 0.8157691 0.8000086

overall marker survival by Monte Carlo:

under H0 survival(SE) NA ( NA ) ( 25003138284 iterations)

under H1 survival(SE) 0.7988015 ( 0.0008018129 ) ( 249987 iterations)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Design 17

alpha 0.0151981 0.000605043 6.26315e-05 1.67692e-07

n 8261 13213 14961 23991

frac 0.5 test statistic controls

effect size raf 0.2 OR1 1.16 OR2 1.32

cumulative marker survival produced by OMD

under H0 0.0151981 0.00046911 5.03258e-05 1e-07

under H1 0.916 0.879 0.8371 0.8067

cumulative marker survival by numerical integration

under H0 0.0151981 0.0004691106 5.032351e-05 1.000026e-07

under H1 0.9159686 0.8789518 0.8371851 0.8067688

overall marker survival by Monte Carlo:
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under H0 survival(SE) NA ( NA ) ( 24999341551 iterations)

under H1 survival(SE) 0.8121438 ( 0.0007981135 ) ( 239513 iterations)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Design 18

alpha 0.0141247 0.000113597 3.90349e-05 1.71949e-07

n 8261 13796 19039 23991

frac 0.5 test statistic controls

effect size raf 0.2 OR1 1.16 OR2 1.32

cumulative marker survival produced by OMD

under H0 0.0141247 9.7878e-05 1.30717e-05 1e-07

under H1 0.912 0.8327 0.8278 0.8

cumulative marker survival by numerical integration

under H0 0.0141247 9.787586e-05 1.307104e-05 9.999924e-08

under H1 0.9119884 0.8327137 0.8277745 0.7999902

overall marker survival by Monte Carlo:

under H0 survival(SE) NA ( NA ) ( 25000186522 iterations)

under H1 survival(SE) 0.8018759 ( 0.0007971485 ) ( 250015 iterations)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Design 19

alpha 0.0151982 8.3872e-05 1.66858e-07

n 8261 14336 23991

frac 0.5 test statistic controls

effect size raf 0.2 OR1 1.16 OR2 1.32

cumulative marker survival produced by OMD

under H0 0.0151982 7.23256e-05 1e-07

under H1 0.916 0.8373 0.8056

cumulative marker survival by numerical integration

under H0 0.0151982 7.232614e-05 9.999135e-08

under H1 0.915969 0.837262 0.8055472

overall marker survival by Monte Carlo:

under H0 survival(SE) NA ( NA ) ( 25002160141 iterations)

under H1 survival(SE) 0.806953 ( 0.0008033304 ) ( 241392 iterations)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Design 20

alpha 0.0150888 8.48443e-05 1.72473e-07

n 8261 14069 23991

frac 0.5 test statistic controls

effect size raf 0.2 OR1 1.16 OR2 1.32

cumulative marker survival produced by OMD

under H0 0.0150888 7.40961e-05 1e-07

under H1 0.9156 0.8302 0.8

cumulative marker survival by numerical integration

under H0 0.0150888 7.409592e-05 1.000101e-07

under H1 0.915581 0.8301532 0.8000019

overall marker survival by Monte Carlo:

under H0 survival(SE) NA ( NA ) ( 24997484952 iterations)

under H1 survival(SE) 0.8026816 ( 0.0007959541 ) ( 249997 iterations)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Design 21

alpha 0.845678 0.5 0.0102881 1.10564e-05 2.15015e-07

n 4630 8333 15741 28704 47222

frac 0.2 test statistic pooled

effect size raf 0.1 OR1 1.2 OR2 1.4

cumulative marker survival produced by OMD

under H0 0.845678 0.420098 0.00959569 9.54509e-06 7.14286e-08

under H1 0.9833 0.9646 0.9025 0.8062 0.8

cumulative marker survival by numerical integration

under H0 0.845678 0.4201138 0.009595924 9.544935e-06 7.14497e-08

under H1 0.9832842 0.9646261 0.9024829 0.8062913 0.8000023

overall marker survival by Monte Carlo:

under H0 survival(SE) NA ( NA ) ( 34989646671 iterations)

under H1 survival(SE) 0.8019448 ( 0.0007970743 ) ( 249996 iterations)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Design 22

alpha 0.98148 0.537037 0.0226338 9.06833e-06 1.94711e-07

n 2778 8333 13889 30556 47222

frac 0.2 test statistic pooled
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effect size raf 0.1 OR1 1.2 OR2 1.4

cumulative marker survival produced by OMD

under H0 0.98148 0.421766 0.0200995 7.41572e-06 7.14286e-08

under H1 0.9953 0.9388 0.8857 0.807 0.8

cumulative marker survival by numerical integration

under H0 0.98148 0.4217755 0.02009949 7.415371e-06 7.144236e-08

under H1 0.9952714 0.9387909 0.8856468 0.8069792 0.7999983

overall marker survival by Monte Carlo:

under H0 survival(SE) NA ( NA ) ( 34993240114 iterations)

under H1 survival(SE) 0.8030744 ( 0.0007953465 ) ( 250003 iterations)

D Module CRP

A separate R script (called CRPGWAS2.r hereafter) was programmed by a programmer

not involved in the programming of Seq++/GWAS CRP. Two artifical examples were

calculated with both CRPGWAS2.r and with Seq++/GWAS CRP.

The input data for both examples are displayed in the following format below:

a) general parameters

FWER, family wise error rate,

WILDCARDS, number of placeholders specified before stage 1 genotyping,

n1, total number of individuals after stage 1,

n2+n1, total number of individuals after stage 2 according to initial study design specified

before stage 1 genotyping,

n1+n2neu, revised total number of individuals re-specified after stage 1 data have been

inspected

b) stage 1 and stage 2 data
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These are displayed in the usual PLINK format:

SNP, name of the marker locus specified by the user,

A1 and A2, names of the two alleles at the locus,

F A and F U, frequency of allele A1 in cases and controls, resp.,

CHISQ, value of the chisquare test statistics after first stage genotyping,

p, p-value obtained by referring CHISQ to a df 1 chisquare distribution.

c) continuation information indicating which alleles at which loci shall be tested for

association after stage 2:

SNP, name of the SNP

weiter1, name of an allele at this locus which the user wants to be tested for association

after stage 2

weiter2, name of another allele at this locus which the user wants to be tested for

association after stage 2

Those SNPS which are listed in the stage 2 input file but for which no continuation

information is specified are assumed to be entirely dropped after stage 1, i.e., none of the

two alleles at this locus will be tested for association after stage 2. Those SNPs which are

listed in the continuation table but not in the stage 1 table are supposed to be markers

genotyped on stage 2 as substitutes for placeholders and which have to be tested after

stage 2.

EXAMPLE 1 (internal name of the input file: S1.txt, S1 in PLINK.txt)

Example 1 INPUT data

# example 1 general parameters

FWER = 0.0500, WILDCARDS = 5, n1=1000, n2+n1 = 2000, n1+n2neu=2200

# example 1 STAGE 1 data
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SNP A1 F A F U A2 CHISQ p

rs1 A 0.216 0.180 C 4.182156134 4.085170e-02

rs2 T 0.104 0.036 G 36.763770513 1.333454e-09

rs3 C 0.288 0.462 T 65.642724576 5.405415e-16

rs4 T 0.213 0.195 C 1.047824793 3.060086e-01

rs5 A 0.120 0.103 G 1.497548994 2.210489e-01

rs6 T 0.074 0.075 G 0.007102374 9.328373e-01

rs7 A 0.055 0.063 G 0.533280005 4.652311e-01

rs8 C 0.135 0.146 T 0.521736131 4.701020e-01

rs9 G 0.198 0.178 T 1.306233346 2.530778e-01

rs10 C 0.214 0.185 T 2.541107935 1.109169e-01

rs11 T 0.092 0.099 G 0.280850576 5.961443e-01

# example 1 continuation information

SNP weiter1 weiter2

rs1 A C

rs2 T G

rs3 T

rs4 C T

rs5 G

rs6 T G

rs10 C

rs100 C G

rs101 A

rs102 A

# example 1 STAGE 2 data
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SNP A1 F A F U A2 CHISQ p

rs1 A 0.2210 0.1845 C 8.2815960 4.004891e-03

rs2 T 0.0845 0.0400 G 34.1365029 5.137837e-09

rs3 C 0.2900 0.4665 T 134.8420266 3.575117e-31

rs4 T 0.2030 0.1935 C 0.5894888 4.426169e-01

rs5 A 0.1140 0.1000 G 2.0415816 1.530504e-01

rs6 T 0.0770 0.0680 G 1.1663571 2.801510e-01

rs7 A 0.0660 0.0510 G 3.8433288 4.994427e-02

rs8 C 0.1325 0.1545 T 3.9326094 4.735841e-02

rs9 G 0.1885 0.1810 T 0.3677510 5.442327e-01

rs10 C 0.1910 0.2030 T 0.8737334 3.499238e-01

rs11 T 0.0935 0.0985 G 0.2823088 5.951919e-01

rs100 C 0.3350 0.2350 G 26.2398321 3.015383e-07

rs101 G 0.0760 0.1050 A 5.5548950 1.842908e-02

rs102 A 0.5360 0.4400 T 18.5728565 1.635326e-05

D.1 Results from the R Script CRPGWAS2.r for example 1

Calculation of final critical limits for stage 2 test statistics for the marker al-

leles to be continued on stage 2

SNP n final posAll other allele stage1 zscore lower critlim upper critlim

rs1 2200 A C 2.04503206 -3.131210 2.868018

rs2 2200 T G 6.06331349 -3.389783 2.609445

rs3 2200 C T -8.10201978 -2.478256 Inf

rs4 2200 T C 1.02363313 -3.065484 2.933744

rs5 2200 A G 1.22374384 -3.078361 Inf

rs6 2200 T G -0.08427558 -2.994191 3.005037

rs10 2200 C T 1.59408530 -Inf 2.897036

rs100 1200 C G 9999.00000 -2.871912 2.871912

rs101 1200 A G 9999.00000 -Inf 2.871912

rs102 1200 A T 9999.00000 -Inf 2.871912
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Legend: lower critlim, upper critlim, lower and upper critical limit for the final z score test

statistics after stage 2. Inf, infinity. posAll = the name of one of the allele defining how the

final z score test statistics has to be built. If there is an excess of allele posAll in the case group,

then the z-score after stage 2 must have positive sign. n final = total number of individuals to

be included in the final test statistics

Here are two intermediate variables calculated by CRPGWAS2.r during the above run:

CRPSUMMIN = 2.015405 (the minimal CRP sum, see Scherag et al. (2009)) cstern =

2.871912 (the common one-sided critical limit for all marker loci to be tested on stage 2,

before modification of the stage 2 sample size)

The final test decisions

SNP A1 F A F U A2 CHISQ posAll lower critlim upper critlim final test decision

rs1 A 0.2210 0.1845 C 8.2815960 A -3.131210 2.868018 at snp rs1 case excess of A

rs10 C 0.1910 0.2030 T 0.8737334 C -Inf 2.897036 no evidence of association

rs100 C 0.3350 0.2350 G 26.2398321 C -2.871912 2.871912 at snp rs100 case excess of C

rs101 G 0.0760 0.1050 A 5.5548950 A -Inf 2.871912 no evidence of association

rs102 A 0.5360 0.4400 T 18.5728565 A -Inf 2.871912 at snp rs102 case excess of A

rs2 T 0.0845 0.0400 G 34.1365029 T -3.389783 2.609445 at snp rs2 case excess of T

rs3 C 0.2900 0.4665 T 134.8420266 C -2.478256 Inf at snp rs3 case excess of T

rs4 T 0.2030 0.1935 C 0.5894888 T -3.065484 2.933744 no evidence of association

rs5 A 0.1140 0.1000 G 2.0415816 A -3.078361 Inf no evidence of association

rs6 T 0.0770 0.0680 G 1.1663571 T -2.994191 3.005037 no evidence of association

Legend: snp, F A, F U, CHISQ reproduced from input table STAGE 2; posAll see legend to

the table before

D.2 Output of module CRP for example 1

Result after stage 1
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SNP A1 fCa fCo A2 P A.pivot z crit- crit+

rs1 A 0,216 0,18 C 0,0408517 A 2,045032034 -3,131207494 2,86801562

rs10 C 0,214 0,185 T 0,1109169 C 1,594085438 -Inf 2,89703362

rs100 C NA NA G 1 C 0 -2,871909417 2,871909417

rs101 G NA NA A 1 A 0 -Inf 2,871909417

rs102 A NA NA T 1 A 0 -Inf 2,871909417

rs2 T 0,104 0,036 G 1.333454e-09 T 6,063313482 -3,389780222 2,609442892

rs3 C 0,288 0,462 T 5.405415e-16 T 8,125890665 -Inf 2,476717941

rs4 T 0,213 0,195 C 0,3060086 T 1,023633111 -3,065481409 2,933741704

rs5 A 0,12 0,103 G 0,2210489 G -1,223743776 -Inf 3,078358347

rs6 T 0,074 0,075 G 0,9328373 T -0,084275615 -2,994188498 3,005034615

Final result

SNP A1 fCa fCo A2 P assoc

rs1 A 0,221 0,184 C 0,004 TRUE

rs10 C 0,191 0,203 T 0,35 FALSE

rs100 C 0,335 0,235 G 3.02e-07 TRUE

rs101 G 0,076 0,105 A 0,0184 FALSE

rs102 A 0,536 0,44 T 1.64e-05 TRUE

rs2 T 0,0845 0,04 G 5.14e-09 TRUE

rs3 C 0,29 0,466 T 3.58e-31 TRUE

rs4 T 0,203 0,194 C 0,443 FALSE

rs5 A 0,114 0,1 G 0,153 FALSE

rs6 T 0,077 0,068 G 0,28 FALSE

EXAMPLE 2 (internal name of the input file: S2.txt, S2 in PLINK.txt)

Example 2 INPUT data

# example 2 general parameters

FWER = 0.0500, WILDCARDS = 5, n1=1000, n2+n1 = 2000, n1+n2neu=2200

# example 2 STAGE 1 data
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SNP A1 F A F U A2 CHISQ p

rs1 G 0.100 0.085 C 1.38418948 0.2393888135

rs2 A 0.116 0.166 T 10.33160313 0.0013077157

rs3 G 0.370 0.290 C 14.81481481 0.0001186001

rs3b G 0.290 0.370 C 14.81481481 0.0001186001

rs4 T 0.183 0.177 A 0.11525016 0.7342442935

rs5 C 0.146 0.144 G 0.01653603 0.8976800982

rs6 A 0.515 0.482 T 2.17842697 0.1399574455

rs7 T 0.047 0.039 A 0.73954241 0.3898075005

rs8 G 0.234 0.222 C 0.41152263 0.5211976866

rs9 A 0.289 0.307 T 0.74920224 0.3867289244

rs10 C 0.328 0.274 G 6.99817606 0.0081592810

rs11 C 0.067 0.063 G 0.12999253 0.7184397889
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# example 2 continuation information

SNP weiter1 weiter2

rs1 G

rs2 T

rs3 G

rs3b G

rs4 T A

rs6 A

rs8 G C

rs100 G

rs101 T A

# example 2 STAGE 2 data

SNP A1 F A F U A2 CHISQ p

rs1 G 0.1190 0.0890 C 9.899029895 1.653659e-03

rs2 A 0.1120 0.1595 T 19.489788646 1.011389e-05

rs3 G 0.3760 0.2950 C 30.290998573 3.718476e-08

rs3b G 0.2950 0.3760 C 30.290998573 3.718476e-08

rs4 T 0.2040 0.1970 A 0.297736594 5.853049e-01

rs5 C 0.1525 0.1590 G 0.329530409 5.659357e-01

rs6 A 0.4960 0.4945 T 0.008956873 9.246002e-01

rs7 T 0.0475 0.0425 A 0.538358008 4.631140e-01

rs8 G 0.2270 0.2265 C 0.001421111 9.699288e-01

rs9 A 0.2945 0.3010 T 0.197967611 6.563664e-01

rs10 C 0.3090 0.2975 G 0.635015143 4.255217e-01

rs11 C 0.0650 0.0720 G 0.770549292 3.800472e-01

rs100 G 0.4360 0.3080 C 37.744194619 8.065639e-10

rs101 T 0.0980 0.1010 A 0.050170021 8.227677e-01
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D.3 Results from the R Script CRPGWAS2.r for example 2

Calculation of final critical limits for stage 2 test statistics for the marker al-

leles to be continued on stage 2

snp n final FWER posAll other allele stage1 zscore lower critlim upper critlim

rs1 2200 0.05 G C 1.1765158 -Inf 2.950299

rs2 2200 0.05 A T -3.2142811 -2.819170 Inf

rs3 2200 0.05 G C 3.8490018 -Inf 2.778327

rs3b 2200 0.05 G C -3.8490018 -Inf 3.270149*

rs4 2200 0.05 T A 0.3394851 -3.047852 3.004161

rs6 2200 0.05 A T 1.4759495 -Inf 2.931030

rs8 2200 0.05 G C 0.6415003 -3.067286 2.984726

rs100 1200 0.05 G C 9999.0000000 -Inf 2.897181

rs101 1200 0.05 T A 9999.0000000 -2.897181 2.897181

Here are again the interim results (see example 1): crpsummin 0.6027494, cstern 2.897181.

The final test decisions
SNP A1 F A F U A2 CHISQ posAll lower critlim upper critlim final test decision

rs1 G 0.119 0.0890 C 9.899029895 G -Inf 2.950299 at snp rs1 case excess of G,

rs100 G 0.436 0.3080 C 37.744194619 G -Inf 2.897181 at snp rs100 case excess of G,

rs101 T 0.098 0.1010 A 0.050170021 T -2.897181 2.897181 no evidence of association

rs2 A 0.112 0.1595 T 19.489788646 A -2.819170 Inf at snp rs2 case excess of T,

rs3 G 0.376 0.2950 C 30.290998573 G -Inf 2.778327 at snp rs3 case excess of G,

rs3b G 0.295 0.3760 C 30.290998573 G -Inf 3.270149 no evidence of association

rs4 T 0.204 0.1970 A 0.297736594 T -3.047852 3.004161 no evidence of association

rs6 A 0.496 0.4945 T 0.008956873 A -Inf 2.931030 no evidence of association

rs8 G 0.227 0.2265 C 0.001421111 G -3.067286 2.984726 no evidence of association

D.4 Output of module CRP for example 2

Result after stage 1
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SNP A1 fCa fCo A2 P A.pivot z crit- crit+

rs1 G 0,1 0,085 C 0,239388814 G 1,176515822 -Inf 2,950298689

rs100 G NA NA C 1 G 0 -Inf 2,89718056

rs101 T NA NA A 1 T 0 -2,89718056 2,89718056

rs2 A 0,116 0,166 T 0,001307716 T 3,214281127 -Inf 2,81917036

rs3 G 0,37 0,29 C 0,0001186 G 3,849001874 -Inf 2,778326662

rs3b G 0,29 0,37 C 0,0001186 G -3,849001874 -Inf 3,273686147 *

rs4 T 0,183 0,177 A 0,734244294 T 0,339485135 -3,047851961 3,004160847

rs6 A 0,515 0,482 T 0,139957446 A 1,475949515 -Inf 2,931030406

rs8 G 0,234 0,222 C 0,521197687 G 0,641500299 -3,06728636 2,984726448

Final result

SNP A1 fCa fCo A2 P assoc

rs1 G 0,119 0,089 C 0,00165 TRUE

rs100 G 0,436 0,308 C 8.07e-10 TRUE

rs101 T 0,098 0,101 A 0,823 FALSE

rs2 A 0,112 0,16 T 1.01e-05 TRUE

rs3 G 0,376 0,295 C 3.72e-08 TRUE

rs3b G 0,295 0,376 C 3.72e-08 FALSE

rs4 T 0,204 0,197 A 0,585 FALSE

rs6 A 0,496 0,494 T 0,925 FALSE

rs8 G 0,227 0,226 C 0,97 FALSE

* Comment: There is a marked deviation from the value produced by CRPGWAS2.r for

this entry. This is due to numerical precision. In this entry, the conditional probability to

exceed the upper (!) critical limit is very small (close to 0), because the interim z score is

strongly negative. Numerical problems may arise for such extreme data.
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D.5 Performance test of CRP (running time) with a large marker

panel

This was performed with an artificially generated data set including an initial (stage 1)

marker panel of 500000 SNPs (with two-sided test at each locus according to initial plan).

The TOP 10000 SNPs (smallest p-values) were carried forward to stage 2, with a one-sided

test planned for the final analysis. Only the most promising direction according to the

interim result after stage 1 was to be tested at the end of stage 2. 1000 placeholders for a

two-sided test (2000 one-sided tests) were foreseen. 100 placeholders were actually used on

stage 2, with a two-sided test at every locus (200 one-sided tests). Family wise error rate

was FWER=0.05, for 501.000 two-sided tests. Sample size parameters were as follows:

frac=0.5, N1=1000, N1+N2=1500m N1+N2new=2000, which implies that N2new=1000

individuals would be genotyped at 100 new marker loci substituted for placeholders after

stage 1.

The running time was about 14 to 15 hours (PC R. Pahl, 21./22.08.2012).

Internal file names of the original data:

Data stage 1: ...\CRPtest\STAGE1.txt

Data stage 2: ...\CRPtest\STAGE2.txt

The names of the SNPs also describe the genetic model under which the data for the

respective SNP was generated, i.e., the MAF and the odds ratio (e.g.,. ”rs6OR0.5a0.5”,

”rs4711OR1a0.312”).

The 100 markers newly genotyped on stage 2, as substitutes for placeholders, are listed

at the end of the file STAGE2. They are characterised by SNP names with a prefix ”pl...”

instead of ”rs...” which denote those SNPs already genotyped on stage 1.

125



References

Cheverud, J. M. (2001), A simple correction for multiple comparisons in interval mapping
genome scans. Heredity, , 87, 52–58.

Freidlin B, Zheng G, Li Z, Gastwirth JL (2002). Trend tests for case-control studies of
genetic markers: power, sample size and robustness. Hum Hered 53, 146–152. http:

//dx.doi.org/64976.

Johnson, Steven G. (2010), The NLopt nonlinear-optimization package, http://

ab-initio.mit.edu/nlopt.

Jones, D. R., Perttunen, C. D., Stuckmann, B. E. (1993), Lipschitzian optimization
without the lipschitz constant. Journal of Optimization Theory and Applications , 79(1),
157–181.

Kaelo, P., Ali, M. M. (2006), Some variants of the controlled random search algorithm
for global optimization. Journal of Optimization Theory and Applications , 130(2),
253–264.
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