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Outline

= Semantics for Service Composition exploiting Natural Language

= Semantics for Service Composition with recommendations

= Conclusions:
— Three layer architecture
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Semantics for Service Composition exploiting
Natural Language



"Natural Mashups" Goal
— Make as simple as possible the creation of personalized added-value services

that can be executed immediately or saved for further usage.
» Using a restricted form of natural language

. | want to

Send to mariano the weather translated to english

Very cloudy sky becoming more variable. Without
precipitation. Temperature 13 degrees Celziuz. The
weather will be cold in morning.

Send|to Mariano the weather translated to english n

news + weather+ messaging+ franslation+ call+
define + synonym+ tweet+ fiter+ .

City

When

myservices graph report log




Core design principles

— Interpretation of a request implies reasoning on semantic abstractions. In our case the core semantic
data are service operations (message sending, translation of a text, and so on).

— Then these abstractions are annotated by syntax patterns (NL Annotations) to activate NL
— Then mappings from abstraction to concrete services need to be defined

Advantages

— Using abstractions avoid replication of NL annotations (Rather than annotating "send SMS by Orange", and
"send SMS by Telefonica" we annotate generically: "Messaging/send").

— More stable definitions on which reasoning can be done

— We can easily switch from one mapping choice to another mapping choice.
Mapping could be done statically or dynamically depending on user context.

How to represent our semantic data (functions)

— Use service-based representation => Abstract Services containing
generic service operations. No formalism gap between abstract

and Concrete" level . " . . Send_the_weather_translated_to_english::go
=> Example "Messaging" abstract service representrs the semantics
— => Language datatype represents the type of parameter I
— => An Ontology is generated from service-based representation —— 1
’ \'Lu'.siz Tl’unsiulu( ; cre:\[erxz("Tnms]u[t;l"'? i
var s3: Messaging := createProxy("Messaging)
sen:cencé: S-end by SM3 Paris Wealt.her translated in Engli Y
B | wantto item: Zend -» service[verb]: Messaging ; <<ServiceCall>> ;
itewm: b‘_i,? - argprefi:-: var rl: String = sl.getWeatherForecasticity,when)
Send to mariane the weather translated to english item: SMS —-= argvalue: (Hessaging] kind="sm="
<<ServiceCall>>

itewm: weather -»> serwvice[noun] : Weather
! item: translated -> servicel[adjective]: Translation
Wery cloudy sky becoming more variable. Without item: in -> argvalue: [(Translation] targetLancguage="fre

var r2: String = s2.translate(lang,rl)

. item: Paris -> argvalue: (Weather) city="'Paris'"™

A J

precipitation. Temperature 13 degrees Celsius. The

weather will be cold in morning item: English

<<ServiceCall>>
result ;= s3.send(recipient," NatMashups","NatMashups: the weather translated",r2,"")

wTEY Data wTEE
Data 'Weather' (city="'Paris'"™) {3:5} é)

ModifiedData 'Translation' (wodification="translated",
text=Data: :Weather, targetLanguage="unknown",

sourcelanguage="french" [preferred] ) {3:8}
Order IHessaging' (kind="sm=",message=Modifiedbata: : Translation) {}




Architecture Overview

Abstract
Services

Ex:
Translation,
News,
Messaging

L Annotations

Ex: Translate (verbe),
translated (adjectif)
news (nom)
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v

Instanciation
Pattern

Composer

Service
Mappings

Ex: News -> Le Monde SCI’ipt
Contacts: -> Mammie

Ex: ToOpenMashup,
ToSpatelEngine, P rOjeCtOrS

to MyRD etc

Ex: Messaging -> SMSEnabler

Code




Design Concepts

mappings Abstract service
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Semantics for Service Composition exploiting
Reccommendations



Found the assembly of components that is useful to realize
an idea of service

Partial (or complete) generation of the mashup

mappings
N \ursery
A Of Services

Correspondancey
K now | ed g e Action/Opération .
Base Citymap

Zone/Quartiers/Composants /Interfaces/Opérations/Paramétres
/Interfaces/Opérations + Protocoles

Goals
+ Actions/Entities/preconditions/effects

Final Presentation



Reccommendation

C

Urbanism Tools

Provide the main topic of your service

Emergency|

Select or deselect items, click on arrows to refine the reccommendations

[[IEmergencyFriends [related]
[C] SocialNetworic::getEmergencyFriends [prod]
[ Doctor [related]
[C] YellowPages: :getInterestPoints('doctor') [prod]
[ Location [related]
[Cl Geolocation::get UserGeographicalLocation [prod]

GEMERATE SERVICE l

-

Functional Code

emergencyFriends = SocialNetwork-getEmergencyFriends (user,contact);
imvite Audio = Adaptation-convertTextToSpeech (message);

Logical Code

emergencyFriends = CommunityPlis-getEmergencyFriends(user.contact) ;
inviteAudio = TextToSpeech-text2speech(message," wav") ;
ClickToCall=createCall(user, contact. invite Audio) ;

CommunicationControl-requestOutgoingCommunication (invite Audio user.contact);

EmergencyFriends [related)
SocialNetworlk::getEmergencyFriends [prod]
[7] Authentification [pre]
[7] ExplicitUserAuthentication: -authenticate User [cons]
[C] Contact [use]
CommunicationControl: vequestOQutgoingCommunication [cons]
[ InviteAudio [opt]
V] Adaptation::convert TextToSpeech [prod]
[C] MessagingManagement::record [prod]
[Tl MessagingManagement: :sendOutMessage [cons]
[[] SocialNerwork: :post ToFriend [cons]
[C] EmergencyFriends [out]
[T CommunicationControl: :requestQutgoingCommunication [cons]
[[] MessagingManagement: :sendQutMessage [cons]
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Semantic Usage

= Requirements
— Various relationships need to be represented:
» production/consumption of resources,
» entity substitution,
» pre/post,
» outputs/effects

— Categorization of functionalities (ex: CRUD)

— Grouping by domain for context resolution
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Conclusions



Conclusions

= Three level architecture
— Concrete Services
— Abstract Services
— Pure Concepts

Abstract Services
| /

Concrete Services & Products

= Meta-modeling and Ontologies are used in complementary way

= Actual work: Tool merging NL, graphical oriented mashup and
recommendation.
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