Use of Semantics for Service Composition

Mariano Belaunde (MAPS/MEP/UED)

Metadata Registries Workshop, May 30" 2012
Berlin

Outline

= Semantics for Service Composition exploiting Natural Language

= Semantics for Service Composition with recommendations

= Conclusions:
— Three layer architecture

France Telecom Group restricted.

Semantics for Service Composition exploiting
Natural Language

"Natural Mashups" Goal
— Make as simple as possible the creation of personalized added-value services

that can be executed immediately or saved for further usage.
» Using a restricted form of natural language

. | want to

Send to mariano the weather translated to english

Very cloudy sky becoming more variable. Without
precipitation. Temperature 13 degrees Celziuz. The
weather will be cold in morning.

Send|to Mariano the weather translated to english n

news + weather+ messaging+ franslation+ call+
define + synonym+ tweet+ fiter+ .

City

When

myservices graph report log

Core design principles

— Interpretation of a request implies reasoning on semantic abstractions. In our case the core semantic
data are service operations (message sending, translation of a text, and so on).

— Then these abstractions are annotated by syntax patterns (NL Annotations) to activate NL
— Then mappings from abstraction to concrete services need to be defined

Advantages

— Using abstractions avoid replication of NL annotations (Rather than annotating "send SMS by Orange", and
"send SMS by Telefonica" we annotate generically: "Messaging/send").

— More stable definitions on which reasoning can be done

— We can easily switch from one mapping choice to another mapping choice.
Mapping could be done statically or dynamically depending on user context.

How to represent our semantic data (functions)

— Use service-based representation => Abstract Services containing
generic service operations. No formalism gap between abstract

and Concrete" level . " . . Send_the_weather_translated_to_english::go
=> Example "Messaging" abstract service representrs the semantics
— => Language datatype represents the type of parameter I
— => An Ontology is generated from service-based representation —— 1
’ \'Lu'.siz Tl’unsiulu(; cre:\[erxz("Tnms]u[t;l"'? i
var s3: Messaging := createProxy("Messaging)
sen:cencé: S-end by SM3 Paris Wealt.her translated in Engli Y
B | wantto item: Zend -» service[verb]: Messaging ; <<ServiceCall>> ;
itewm: b‘_i,? - argprefi:-: var rl: String = sl.getWeatherForecasticity,when)
Send to mariane the weather translated to english item: SMS —-= argvalue: (Hessaging] kind="sm="
<<ServiceCall>>

itewm: weather -»> serwvice[noun] : Weather
! item: translated -> servicel[adjective]: Translation
Wery cloudy sky becoming more variable. Without item: in -> argvalue: [(Translation] targetLancguage="fre

var r2: String = s2.translate(lang,rl)

. item: Paris -> argvalue: (Weather) city="'Paris'"™

A J

precipitation. Temperature 13 degrees Celsius. The

weather will be cold in morning item: English

<<ServiceCall>>
result ;= s3.send(recipient," NatMashups","NatMashups: the weather translated",r2,"")

wTEY Data wTEE
Data 'Weather' (city="'Paris'"™) {3:5} é)

ModifiedData 'Translation' (wodification="translated",
text=Data: :Weather, targetLanguage="unknown",

sourcelanguage="french" [preferred]) {3:8}
Order IHessaging' (kind="sm=",message=Modifiedbata: : Translation) {}

Architecture Overview

Abstract
Services

Ex:
Translation,
News,
Messaging

L Annotations

Ex: Translate (verbe),
translated (adjectif)
news (nom)

Analyser

v

Instanciation
Pattern

Composer

Service
Mappings

Ex: News -> Le Monde SCI’ipt
Contacts: -> Mammie

Ex: ToOpenMashup,
ToSpatelEngine, P rOjeCtOrS

to MyRD etc

Ex: Messaging -> SMSEnabler

Code

Design Concepts

mappings Abstract service

) :

+abstract| AbstractService ServiceParameter ServiceType

+serv7zl +parameterf 1 / k

/ SemanticConcept SimpleType

NLServiceRule [N $
+concept

NLServiceParameterRule
SemanticValue

ServiceMapping

*
+concrete

ConcreteService

+language: String
+activationVerbs: String[*] - +prefixes: String[*]
+activationNouns: String[*] +asAdjective: Boolean
+activationAdjectives: String[*] +isEnum: Boolean
+isSynthetized: Boolean
+isSubject: Boolean

+semanticVall

R "“""'""'""“'""""\._
“\,_\ tliteralTerm | g ServiceParameterValue
NLServiceInterpretationLogic .*\-._\ *
N,
‘\.,.\
.,
\'s
., .
- - ~.. declarative

NLServiceInterpretationEntry \.‘\

. . '.'\".

imperative ™.

o

NLProcessAsOrder| | NLProcessAsData| | processAsModifiedData NLProcessAsModifiedOrder

NL Annotation

Semantics for Service Composition exploiting
Reccommendations

Found the assembly of components that is useful to realize
an idea of service

Partial (or complete) generation of the mashup

mappings
N \ursery
A Of Services

Correspondancey
K now | ed g e Action/Opération .
Base Citymap

Zone/Quartiers/Composants /Interfaces/Opérations/Paramétres
/Interfaces/Opérations + Protocoles

Goals
+ Actions/Entities/preconditions/effects

Final Presentation

Reccommendation

C

Urbanism Tools

Provide the main topic of your service

Emergency|

Select or deselect items, click on arrows to refine the reccommendations

[[IEmergencyFriends [related]
[C] SocialNetworic::getEmergencyFriends [prod]
[Doctor [related]
[C] YellowPages: :getInterestPoints('doctor') [prod]
[Location [related]
[Cl Geolocation::get UserGeographicalLocation [prod]

GEMERATE SERVICE l

-

Functional Code

emergencyFriends = SocialNetwork-getEmergencyFriends (user,contact);
imvite Audio = Adaptation-convertTextToSpeech (message);

Logical Code

emergencyFriends = CommunityPlis-getEmergencyFriends(user.contact) ;
inviteAudio = TextToSpeech-text2speech(message," wav") ;
ClickToCall=createCall(user, contact. invite Audio) ;

CommunicationControl-requestOutgoingCommunication (invite Audio user.contact);

EmergencyFriends [related)
SocialNetworlk::getEmergencyFriends [prod]
[7] Authentification [pre]
[7] ExplicitUserAuthentication: -authenticate User [cons]
[C] Contact [use]
CommunicationControl: vequestOQutgoingCommunication [cons]
[InviteAudio [opt]
V] Adaptation::convert TextToSpeech [prod]
[C] MessagingManagement::record [prod]
[Tl MessagingManagement: :sendOutMessage [cons]
[[] SocialNerwork: :post ToFriend [cons]
[C] EmergencyFriends [out]
[T CommunicationControl: :requestQutgoingCommunication [cons]
[[] MessagingManagement: :sendQutMessage [cons]

France Telecom Group restricted.

Semantic Usage

= Requirements
— Various relationships need to be represented:
» production/consumption of resources,
» entity substitution,
» pre/post,
» outputs/effects

— Categorization of functionalities (ex: CRUD)

— Grouping by domain for context resolution

France Telecom Group restricted.

Conclusions

Conclusions

= Three level architecture
— Concrete Services
— Abstract Services
— Pure Concepts

Abstract Services
| /

Concrete Services & Products

= Meta-modeling and Ontologies are used in complementary way

= Actual work: Tool merging NL, graphical oriented mashup and
recommendation.

France Telecom Group restricted.

