Informationsveranstaltung
 Qualitätsmanagement für Hochdurchsatz-Genotypisierung

Statistische Qualitätssicherung von Affymetrix- Daten

Berlin, 21.06.2010
Arne Schillert \& Andreas Ziegler
Institut für Medizinische Biometrie und Statistik, Universität zu Lübeck

Hochdurchsatz-Genotypisierung

- Ergebnis einer genomweiten Assoziationsstudie:

Samani, NEJM 2007, 357:443-453

Schematischer Aufbau eines Microarrays

- Oligonukleotide auf Glasträger fixiert
- komplementär zur Sequenz des SNPs
- vollständig komplementär: perfect match (PM)
Base des SNPs nicht komplementär: mismatch (MM)
- pro SNP mehrere Oligonukleotide

Ablauf eines Microarray-Experimentes

- DNA fragmentieren und markieren
- DNA-Fragmente auf Array hybridisieren lassen
- Abwaschen nicht gebundener Fragmente
- Farbstoff anhängen und anregen
- Scannen und Bild an Raster ausrichten \rightarrow CEL-Datei

Falschfarbenbild der Intensitätswerte

Lipshutz, Nat Genet 1999, 21:20-24

- Intensitätswerte eines

Quadranten zusammengefasst

- Verhältnis von Intensität des A-Allels $\left(I_{A}\right)$ zu Intensität des B-Allels $\left(I_{B}\right)$ bestimmt Genotyp:
$I_{A} \gg I_{B} \rightarrow A / A$
$I_{A} \approx I_{B} \rightarrow A / B$
$I_{A} \ll I_{B} \rightarrow B / B$

Cluster-Plots

theoretisch

Cluster-Plots

theoretisch

praktisch

Cluster-Plots

Cluster-Plots von Realdaten

Einleitung

Genotypisierung mit Microarrays
 Beurteilung der Genotypisierung

Calling-Algorithmen
Übersicht
Calling
Vergleich

Beurteilung von Cluster-Plots

Zusammenfassung

SPORSOARD BYTHE

Identifizierte Algorithmen

Birdseed

BRLMM Bayesian robust linear model with Mahalanobis distance classifier
CHIAMO ital. "lch rufe"
CRLMM Corrected robust linear model with Mahalanobis distance classifier
GEL Genotype calling using empirical likelihood
JAPL lautmalerisch frz. "Ich rufe"
MAMS Multi-array multi-SNP genotype calling
PLASQ Probe-level allele-specific quantification procedure
SNiPer-HD SNiPer High Density

Identifizierte Algorithmen

Birdseed

BRLMM Bayesian robust linear model with Mahalanobis distance classifier
CHIAMO ital. "lch rufe"
CRLMM Corrected robust linear model with Mahalanobis distance classifier
GEL Genotype calling using empirical likelihood
JAPL lautmalerisch frz. "Ich rufe"
MAMS Multi-array multi-SNP genotype calling
PLASQ Probe-level allele-specific quantification procedure
SNiPer-HD SNiPer High Density

Flow chart - CRLMM

Flow chart - JAPL

Confidence Scores - CRLMM

crlmm-calls.txt

	ID1	ID2	ID3
SNP-1	3	2	1
SNP-2	2	2	1

crlmm-conf.txt

	ID1	ID2	ID3
SNP-1	0.999	0.950	0.990
SNP-2	0.990	0.800	0.999

- Annotationsinformation: SNP-1: A/C; SNP-2: G/T
- Grenzwert für Confidence Scores: 0.99
tped Genotypen:

$$
\begin{array}{lllll}
& \text { ID1 } & \text { ID2 } & \text { ID3 } \\
\text { SNP-1 } & \text { C } & \text { C } & 0 & 0 \\
\text { A } & \text { A } \\
\text { SNP-2 } & \text { G } & \text { T } & 0 & 0 \\
\text { G } & \text { G }
\end{array}
$$

Confidence Scores - JAPL

SNP-1.gen

SNP	chipScan	P1	P2	P3
SNP-1	ID1	$5.5 \mathrm{e}-05$	0	0.999
SNP-1	ID2	0.05	0.95	0
SNP-1	ID3	0	0.001	0.999

- Annotationsinformation: SNP-1: A/C
- Grenzwert für A-posteriori Wahrscheinlichkeit: 0.99

tped Genotypen:

$$
\begin{array}{lllll}
& \text { ID1 } & \text { ID2 } & \text { ID3 } \\
\text { SNP-1 } & \text { C } \mathrm{C} & 0 & 0 & \text { A }
\end{array}
$$

HapMap-Daten

- Genotypdaten und CEL-Dateien für das Affymetrix Human Mapping 500k Array Set und den Genome-Wide Human SNP Array 6.0
- Goldstandard
- Daten von 270 Individuen
- nur die der 30 CEU trios verwendet
- CEL-Dateien direkt (www.hapmap.org) oder als Bioconductor Paket verfügbar
- Genotypen von der PLINK Website verwendet

Berechnung der Konkordanz

- PLINKs merge-mode 7 verwendet, d.h. fehlende Genotypen nicht berücksichtigt
- mit HapMap-Daten verglichen
- Bewertung der Güte mittels ADPs:
- Accuracy vs. Drop rate Plots (Lin, Genome Biol 2008, 9:R63)
- für verschiedene Grenzwerte des Confidence Scores Konkordanz und Anteil fehlender Werte bestimmt

Accuracy vs drop rate plot - alle SNPs

ADP - Häufige SNPs

- MAF $\geq 10 \%$
- 321,883 SNPs

ADP - Seltene SNPs

ADP - Homozygote Genotypen

ADP - Heterozygote Genotypen

Ergebnisse der Qualitätskontrolle

Kriterien:

- Anteil fehlender Werte (MiF) < 2\%
- Häufigkeit des seltenen Allels (MAF) > 1\%
- Abweichungen vom HWE (HWE) p > 0.0001

Anzahl der ausgeschlossenen SNPs:

Algorithmus	MiF	MAF	HWE	Summe
BRLMM	153656	77349	67727	213373
Birdseed	111111	77026	65970	166750
CHIAMO	166683	87709	91074	233785
CRLMM	21794	82027	80411	98013
JAPL	66046	69697	70107	136456

SNPs: 482,203

Konkordanz vor/nach der QC

Accuracy [\%]

Einleitung

Genotypisierung mit Microarrays Beurteilung der Genotypisierung

Calling-Algorithmen
Übersicht
Calling
Vergleich

Beurteilung von Cluster-Plots

Zusammenfassung

SPORSOARD BYTHE

Clustervaliditätsmaße

- Beurteilung von Cluster-Plots = interne Validität eines Clusterings in Cluster-Analysen
- Kriterien für die Validität:

A Kompaktheit
B Verbundenheit
C Trennbarkeit
D Kombinationen von A-C

B

- Alternative Idee: Pertubations- Analyse (Teo, Ann Hum Genet 2008, 72: 368-374)

A: Kompaktheit

- gemessen durch Cluster-spezifische Intra-Cluster-Varianz $\mathbb{V a r}\left(\mathrm{IC}_{k}\right)$ und die Gesamt-Intra-Cluster-Varianz $\mathbb{V} \operatorname{ar}(\mathrm{IC})$

$$
\begin{aligned}
\mathbb{V} \operatorname{ar}\left(\mathrm{IC}_{k}\right) & =\frac{1}{n_{k}} \sum_{i=1}^{n_{k}} d_{k}^{2}\left(i, \mu_{k}\right) \\
\mathbb{V} \operatorname{ar}(\mathrm{IC}) & =\frac{1}{n} \sum_{k=1}^{3} \sum_{i=1}^{n_{k}} d_{k}^{2}\left(i, \mu_{k}\right)
\end{aligned}
$$

- In der Praxis jedoch root mean square distance (RMSD):

$$
\mathrm{RMSD}=\sqrt{\mathbb{V} \operatorname{ar}(\mathrm{IC})}
$$

B: Verbundenheit - Connectivity

- Bestimmung mittels „Nächster Nachbar"-Methoden
- Für Probe i des Clusters k wird der j-te nächste Nachbar $n n_{i(j)}$ bestimmt

$$
C_{i, \mathrm{nn}_{i(j)}}=\left\{\begin{array}{ll}
0 & \text { falls } i \text { und } \mathrm{nn}_{i(j)} \text { denselben Genotyp, } \\
\frac{1}{j} & \text { falls } i \text { und } \mathrm{nn}_{i(j)}
\end{array}\right. \text { verschiedene Genotypen }
$$

- Kennzahl für die Verbundenheit für die J nächsten Nachbarn:

$$
\text { Conn }=\sum_{i=1}^{n} \sum_{j=1}^{J} C_{i, \mathrm{nn}_{i(j)}}
$$

- Conn groß \Rightarrow Cluster zweier Genotypgruppen liegen sehr dicht beieinander

C: Trennbarkeit

- Vielzahl von Maßen vorgeschlagen
- für Intensitätsdaten minimaler Abstand zwischen Clustern sinnvoll
- alternativ durchschnittlicher Abstand zum Heterozygoten-Cluster
- werden jeweils Abstände der Clusterzentren betrachtet: $d\left(\boldsymbol{\mu}_{\boldsymbol{k}}, \boldsymbol{\mu}_{k^{\prime}}\right)$
- minimaler Inter-Cluster-Abstand (minD)

$$
\min D=\min _{k \neq k^{\prime}} d\left(\boldsymbol{\mu}_{k}, \mu_{k^{\prime}}\right)
$$

- durchschnittlicher Inter-Cluster-Abstand (meanD)

$$
\text { mean } D=\frac{d\left(\mu_{1}, \mu_{2}\right)+d\left(\mu_{2}, \mu_{3}\right)}{2}
$$

D: Cluster-Separation-Criterion

- nur Cluster-spezifische Kontrast-Mittelwerte \bar{c}_{k} und -Streuungen berücksichtigt

$$
C S C=\min \left\{\frac{\bar{c}_{2}-\bar{c}_{1}}{\sigma_{1}+\sigma_{2}}, \frac{\bar{c}_{3}-\bar{c}_{2}}{\sigma_{2}+\sigma_{3}}\right\}
$$

Praktische Evaluation

- Daten der Gutenberg-Herz-Studie Mainz (3194 Individuen, 649.491 qualitätskontrollierte SNPs)
- 5000 SNPs zufällig ausgewählt
- Bewertung der Güte durch zwei erfahrene Beurteiler \Rightarrow Goldstandard
- Vergleich mit ausgewählten Clustermaßen

ROC-Kurven

- Vergleich der Clustermaße mit Goldstandard:

Kontrastdarstellung

Zusammenfassung

- Unsere Empfehlung: CRLMM
- Hohe Konkordanz bei geringem Anteil fehlender Werte
- Einfach zu benutzen (Bioconductor-Pakete)
- Schnell
- Beschränkungen dieser Analyse:
- HapMap-Daten für Trainung und Evaluation der Modelle verwendet
- Stichprobengröße sehr gering, aktuelle GWA-Studien > 2000 Individuen
- Betrachtung der Cluster-Plots notwendig
- Clustervaliditätsmaße ermöglichen objektive Bewertung
- Automatisierung wird als R-Paket implementiert

Danke für die Aufmerksamkeit!

Affymetrix Genotyping Microarrays

Name Kurzbeschreibung

> Human Mapping 10K 10.204 SNPs, PM+MM
> 2.0 Array

Human Mapping 100K 116.204 SNPs, 2 Arrays, PM+MM Set

Human Mapping 500K 500.568 SNPs, 2 Arrays, PM+MM Array Set

Genome-Wide Human 500.568 SNPs und 420.000 CNVSNP Array 5.0 Sonden, nur PM

Genome-Wide Human 906.600 SNPs und 946.00 CNV-Sonden, SNP Array 6.0 nur PM

Axiom Genotyping So- 567.096 SNPs, komplettes Neudesign lution der Plattform

